matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenAbleitungen bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Ableitungen bestimmen
Ableitungen bestimmen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 So 11.05.2008
Autor: sqoody

Aufgabe
1) [mm] \wurzel{2x^2+4} [/mm]
2) [mm] (sin\wurzel{x})^3 [/mm]

zu 1) ich bekomme über die Kettenregel immer folgendes raus:

[mm] \bruch{4x}{2\wurzel{2x^2+4}} [/mm]

leider ist anscheinend ein Fehler in meiner Berechnung auf den ich aber nicht komme?  Laut Lösung kommt heraus:

[mm] \bruch{2x}{\wurzel{2x^2+4}} [/mm]

Kann mir das jemand genauer erleutern???

Zu Aufgabe 2) ähnliches Problem.
Über die Kettenregel bekomme ich dies heraus:

[mm] \bruch{3sin^2(\wurzel{x})cos(\wurzel{x})}{2\wurzel{x}} [/mm]

stimmen sollte laut Lösung aber dies:

[mm] \bruch{3cos(\wurzel{x})sin^2(\wurzel{x})}{2\wurzel{x}} [/mm]

Kann mir dies auch jemand bitte erleutern wo mein Fehler leigt???

Vielen Dank im voraus.



        
Bezug
Ableitungen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 So 11.05.2008
Autor: Tyskie84

Hi,

> 1) [mm]\wurzel{2x^2+4}[/mm]
>  2) [mm](sin\wurzel{x})^3[/mm]
>  zu 1) ich bekomme über die Kettenregel immer folgendes
> raus:
>  
> [mm]\bruch{4x}{2\wurzel{2x^2+4}}[/mm]
>  

[ok]

> leider ist anscheinend ein Fehler in meiner Berechnung auf
> den ich aber nicht komme?  Laut Lösung kommt heraus:
>  
> [mm]\bruch{2x}{\wurzel{2x^2+4}}[/mm]
>  

Das ist doch das selbe. Schau: [mm] \bruch{\red{4}x}{\red{2}\cdot\wurzel{2x²+4}} [/mm] Jetzt kann man die roten Zahlen kürzen und es kommt heraus: [mm] \bruch{2x}{\wurzel{2x²+4}} [/mm]

> Kann mir das jemand genauer erleutern???
>  
> Zu Aufgabe 2) ähnliches Problem.
>  Über die Kettenregel bekomme ich dies heraus:
>  
> [mm]\bruch{3sin^2(\wurzel{x})cos(\wurzel{x})}{2\wurzel{x}}[/mm]
>  

[ok]

> stimmen sollte laut Lösung aber dies:
>  
> [mm]\bruch{3cos(\wurzel{x})sin^2(\wurzel{x})}{2\wurzel{x}}[/mm]
>

Auch hier kann ich nur sagen dass es das selbe ist. Schau: Ob du nun [mm] 3\cdot\\a\cdot\\b [/mm] schreibst oder [mm] a\cdot\\3\cdot\\b [/mm] ist das selbe da die Multiplikation kommutativ ist.

> Kann mir dies auch jemand bitte erleutern wo mein Fehler
> leigt???
>  
> Vielen Dank im voraus.
>  
>  

[hut] Gruß

Bezug
                
Bezug
Ableitungen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 So 11.05.2008
Autor: sqoody

Ohjehhh, danke dir....die Gedanken hätte ich mir auch machen können bzw. darauf kommen können :-)
Manchmal sieht man einfach dies nicht und denkt zu kompliziert!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]