matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Ableitungen
Ableitungen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:02 Mi 29.02.2012
Autor: nils1991

Hallo,
habe Probleme was die BEzeichnung von Ableitungen angeht:(

Habe hier nämlich verschieden Schreibweisen:

[mm] \bruch{dy}{dx} [/mm]

[mm] \bruch{\Delta y}{\Delta x} [/mm]

Wenn ich dann das Grenzprodukt z.B. der Arbeit berechnen sollt steht da die Funktion durch L. Vor der Funktion und L steht so eine Art d, was aber wiederum ein Delta ist, nur diesmal als eine Art d geschrieben.

Ich studiere VWL, vielleicht hilft das um den Kontext zu verstehen?!

lg Nils


        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 Mi 29.02.2012
Autor: Al-Chwarizmi


> Hallo,
>  habe Probleme was die BEzeichnung von Ableitungen
> angeht:(
>  
> Habe hier nämlich verschieden Schreibweisen:
>  
> [mm]\bruch{dy}{dx}[/mm]
>
> [mm]\bruch{\Delta y}{\Delta x}[/mm]
>
> Wenn ich dann das Grenzprodukt z.B. der Arbeit berechnen
> sollt steht da die Funktion durch L. Vor der Funktion und L
> steht so eine Art d, was aber wiederum ein Delta ist, nur
> diesmal als eine Art d geschrieben.
>  
> Ich studiere VWL, vielleicht hilft das um den Kontext zu
> verstehen?!
>  
> lg Nils


Hallo Nils,

[mm]\bruch{\Delta y}{\Delta x}[/mm]   steht für einen Differenzenquotienten
und [mm]\bruch{d y}{d x}[/mm]  für dessen Grenzwert für [mm] \Delta{x} [/mm] gegen 0,
also ist  $\ [mm] \bruch{d y}{d x}$ [/mm]  einfach eine andere Schreibweise
für die Ableitung f'(x) .

[mm] $\frac{\Delta y}{\Delta x} [/mm] = [mm] \frac{\Delta f(x)}{\Delta x} [/mm] \ .... [mm] \text{ Differenzenquotient}$ [/mm]

[mm] $\frac{d\, y}{d\, x} [/mm] = [mm] \frac{d\, f(x)}{d\, x} [/mm] = [mm] \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} [/mm] \ = [mm] \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} [/mm] \ .... [mm] \text{ Differentialquotient}$ [/mm]


LG   Al-Chw.

Bezug
        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Mi 29.02.2012
Autor: Gonozal_IX

Hiho,

> Vor der Funktion und L steht so eine Art d, was aber wiederum ein Delta ist, nur diesmal als eine Art d geschrieben.

du meinst dann sicherlich [mm] \partial [/mm]
Damit ist die partielle Ableitung gemeint, d.h. wenn eine Funktion von mehr als nur einer Variablen abhängt, bezeichnet man mit

[mm] \bruch{\partial}{\partial x} [/mm] bspw die partielle Ableitung nach x gemeint, d.h. es wird nach x abgeleitet, während alle anderen Variablen wie Konstanten behandelt werden.

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]