matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - Ableitungen
Ableitungen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 Do 16.04.2009
Autor: Englein89

Hallo nochmal :)

Ich bräuchte ein paar kurze Tipps zu den folgenden Ableitungen:

[mm] f(x)=\bruch{4x^2+1}{x^3-x} [/mm]
Mit Quotientenregel abgeleitet:
[mm] \bruch{8x(x^3-x)-(4x^2+1)3x^2}{(x^3-x)^2} [/mm]
[mm] \bruch{8x^4-8x^2-12x^4-3x^2}{(x^3-x)^2} [/mm]
[mm] \bruch{-4x^4-11x^2}{(x^3-x)^2} [/mm]

Kann ich hier nun noch etwas vereinfachen? Eventuell den Nenner ausmultiplizieren und dann [mm] x^2 [/mm] kürzen?

Ansonsten noch ein kleines Problem bei

[mm] \wurzel{3x^2+x}, [/mm] also abgeleitet: [mm] 1/2(3x^2+x)^{-1/2}*6x [/mm]
=> umschreiben: [mm] \bruch{1}{3x(3x^2+x)^2}, [/mm] ist das richtig? Kann ich hier noch vereinfachen, zB durch ausmultiplizieren der binomischen Formel?

Lieben Dank für die Hilfe!

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Do 16.04.2009
Autor: abakus


> Hallo nochmal :)
>  
> Ich bräuchte ein paar kurze Tipps zu den folgenden
> Ableitungen:
>  
> [mm]f(x)=\bruch{4x^2+1}{x^3-x}[/mm]
>  Mit Quotientenregel abgeleitet:
>  [mm]\bruch{8x(x^3-x)-(4x^2+1)3x^2}{(x^3-x)^2}[/mm]

Die Ableitung von [mm] x^3-x [/mm] ist nicht [mm] 3x^2, [/mm] sondern [mm] 3x^2-1. [/mm]
Der letzte Teil des Zählers deiner Ableitung ist also unvollständig.
Gruß Abakus

>  [mm]\bruch{8x^4-8x^2-12x^4-3x^2}{(x^3-x)^2}[/mm]
>  [mm]\bruch{-4x^4-11x^2}{(x^3-x)^2}[/mm]
>  
> Kann ich hier nun noch etwas vereinfachen? Eventuell den
> Nenner ausmultiplizieren und dann [mm]x^2[/mm] kürzen?
>  
> Ansonsten noch ein kleines Problem bei
>  
> [mm]\wurzel{3x^2+x},[/mm] also abgeleitet: [mm]1/2(3x^2+x)^{-1/2}*6x[/mm]
>  => umschreiben: [mm]\bruch{1}{3x(3x^2+x)^2},[/mm] ist das richtig?

> Kann ich hier noch vereinfachen, zB durch ausmultiplizieren
> der binomischen Formel?
>  
> Lieben Dank für die Hilfe!


Bezug
        
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 Do 16.04.2009
Autor: chris0690

hay
mir ist jetzt nicht klar was ich mit (x³-x)² mache.
ist das ne Binomische Formel?
dann würde ich ja [mm] x^6-2x^4+x^2 [/mm] erhalten.

vielen danke für die hilfe

Bezug
                
Bezug
Ableitungen: nicht ausmultiplizieren
Status: (Antwort) fertig Status 
Datum: 17:26 Do 16.04.2009
Autor: Loddar

Hallo Chris,

[willkommenmr] !!


>  mir ist jetzt nicht klar was ich mit (x³-x)² mache.

In diesem Falle: nichts.


> ist das ne Binomische Formel?
>  dann würde ich ja [mm]x^6-2x^4+x^2[/mm] erhalten.

[ok] Ja. Aber das bringt Dich nicht weiter.

Im Gegenteil: wenn Du nun die nächste Ableitung des Bruches berechnen willst, kannst Du bei faktorisierter Form (also nicht ausmultipliziert) viel besser kürzen und vereinfachen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]