matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Ableitungen
Ableitungen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:07 So 06.01.2008
Autor: mathegenie84

Aufgabe
Bestimme die ersten beiden Ableitungen der folgenden Funktion

f(x)= [mm] e^{x}/x [/mm]

Hallo Zusammen

mit Hilfe der Quotientenregel und der Kettenregel sollen wir die Ableitungen bilden.
Die erste Ableitung war glaube ich kein Problem. Sie müsste

f`(x)= e^(x)*(x-1)/ x² sein???? Bin darauf mit der Quotientenregel gekommen.
Leider habe ich keinen Ansatz für die zweite Ableitung. Müsste mit der Kettenregel funktionieren, doch leider weiß ich noch nicht so wirklich wie man diese anwenden soll.

Vielleicht kann mir jemand weiterhelfen???

Gruß
Esther

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 So 06.01.2008
Autor: M.Rex

Hallo

Die erste Ableitung ist korrekt

Jetzt kannst du wieder die Quotientenregel anwenden.

Also:

[mm] f'(x)=\bruch{\overbrace{\overbrace{e^{x}}^{p}\overbrace{(x-1)}^{q}}^{u}}{\underbrace{x²}_{v}} [/mm]

Für u' brauchst du jetzt nur noch zusätzlich die Produktregel.

Also:

[mm] f''=\bruch{\overbrace{[[(\overbrace{e^{x}}^{p}*\overbrace{1}^{q'})+((\overbrace{e^{x}}^{p'}*\overbrace{(x-1)}^{q})]}^{u'}*\overbrace{x²}^{v}]-[\overbrace{e^{x}(x-1)}^{u}*\overbrace{2x}^{v'}]}{\underbrace{x^{4}}_{v²}} [/mm]

Das ganze zu vereinfachen überlasse ich jetzt dir.

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]