matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenAbleitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Trigonometrische Funktionen" - Ableitungen
Ableitungen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frag
Status: (Frage) beantwortet Status 
Datum: 19:39 Mi 17.10.2007
Autor: rhuyeng

Aufgabe
Bilde die erste und zweite Ableitung der folgenden Funktion:


Hallo,
ich habe hier die Funktion [mm] cos^2(x) [/mm] + sin(x)

ich habe mir gedacht, dass man als erstes den Summanden [mm] cos^2(x) [/mm] mit Hilfe der Produktregel ableiten muss. Hab dass wie folgt gemacht:

f'(x): [mm] -sin(x)\cdot [/mm] cos(x)+ [mm] cos(x)\cdot(-sin(x)) [/mm]

ist das überhaupt richtig? bzw. kann man das wie folgt zusammen fassen:
f'(x): sin(x)+2cos(x)???

dann dachte ich kann ich den zweiten Summanden so ableiten:
f'(x): cos(x)

dann müsste es doch
f'(x): [mm] -sin(x)\cdot [/mm] cos(x)+ [mm] cos(x)\cdot(-sin(x))+cos(x) [/mm]

bzw.
f'(x): sin(x)+3cos(x)
heißen, oder?
Vielleicht liege ich auch ganz falsch?
Würde mich sehr über eine Antwort freuen!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

LG Ricarda

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Mi 17.10.2007
Autor: Braunstein

Hallo Ricarda,

-sin(x)*cos(x)+ cos(x)*(-sin(x)) hast du korrekt abgeleitet, und wichtig ist auch, dass du sofort erkannt hast, dass man hier die Produktregel anwenden muss. Die "Vereinfachung" stimmt leider nicht ganz. Richtig ist cos(x)*(-2*sin(x))! cos(x)  hast du richtig abgeleitet (daumenhoch), nur schreib bitte nicht f'(x), da es nur ein Teil von f'(x) ist, zB f'_{1}(x) sieht besser aus.

f'(x): (-sin(x))*cos(x)+ cos(x)*(-sin(x))+cos(x) stimmt!

Die Zusammenfassung stimmt dann leider nicht. Hier kannst du cos(x) rausheben und du erhältst cos(x)*(1-2sin(x))!

Gruß, h.

Bezug
                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 Mi 17.10.2007
Autor: rhuyeng

Aufgabe
Ableiten

Erstmal vielen Dank, aber ich hab noch eine Frage zur "Vereinfachung", ich habe doch 2 cos(x), oder nicht?

Bezug
                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Mi 17.10.2007
Autor: Braunstein

Dies ist abhängig davon, was du "raushebst". Ich habe cos(x) rausgehoben. Wenn du sin(x) raushebst, erhältst du -sin(x)*(2*cos(x))!

Bezug
                                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Mi 17.10.2007
Autor: rhuyeng

Aufgabe
ableiten

Dass mit dem rausheben habe ich nicht ganz verstanden, warum macht man das. Hab aber jetzt einfach mal aus
f'(x): [mm] sin(x)\cdot cos(x)+cos(x)\cdot [/mm] (-sin(x))+cos(x)
versucht dei zweite Ableitung zu machen, dass habe ich dann wie folgt versucht:
als erstes habe ich [mm] sin(x)\cdot [/mm] cos(x) mit der Produktregel abgeleitet.
[mm] f''_(1):cos(x)\cdot cos(x)+sin(x)\cdotsin(x) [/mm]

dann betrachte ich [mm] cos(x)\cdot(-sin(x)) [/mm] auch mit der PR:
f''_(2): [mm] -sin(x)\cdot(-sin(x))+cos(x)\cdot(-cos(x)) [/mm]

und cos(x) habe ich als -sin(x) abgeleitet.
Daraus habe ich dann:
[mm] f''(x):cos(x)\cdot cos(x)+sin(x)\cdotsin(x)+(-sin(x))\cdot(-sin(x))+cos(x)\cdot(-cos(x)) [/mm]
-sin(x)

ist dass so richtig? das kann man aber bestimmt auch noc vereinfachen, oder?

Bezug
                                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Mi 17.10.2007
Autor: Steffi21

Hallo, du hast
[mm] f(x)=cos^{2}(x)+sin(x) [/mm]
f'(x)=-2*cos(x)*sin(x)+cos(x)

Bildung der  2. Ableitung:
1. Teil: -2*cos(x)*sin(x)
u=-2*cos(x)
u'=2*sin(x)
v=sin(x)
v'=cos(x)
[mm] 2*sin(x)*sin(x)-2*cos(x)*cos(x)=2*sin^{2}(x)-2*cos^{2}(x) [/mm]
du hast den Faktor 2 nicht bedacht, der bleibt laut Faktorregel erhalten,
2. Teil: cos(x)
Ableitung: -sin(x)
hattest du

[mm] f''(x)=2*sin^{2}(x)-2*cos^{2}(x)-sin(x) [/mm] jetzt konnte ich deine Klammern nicht nachvollziehen,

Steffi



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]