matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Ableitungen
Ableitungen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:10 So 18.03.2007
Autor: JR87

Hallo,
ich hab eigentlich aus soner Aufgabengruppe eine einfache Ableitungsaufgabe, nur finde ich in meinem Hefter nicht mehr wie das geht. Ich hoffe ihr könnt mir helfen. Ich soll von der folgenden die 1. Ableitung bilden. Wie muss ich vorgehen.

[mm] f(x)=2^{5x} [/mm]

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:39 So 18.03.2007
Autor: HJKweseleit


> Hallo,
>  ich hab eigentlich aus soner Aufgabengruppe eine einfache
> Ableitungsaufgabe, nur finde ich in meinem Hefter nicht
> mehr wie das geht. Ich hoffe ihr könnt mir helfen. Ich soll
> von der folgenden die 1. Ableitung bilden. Wie muss ich
> vorgehen.
>  
> [mm]f(x)=2^{5x}[/mm]  

1. Weg:

[mm]f(x)=2^{5x} = (2^{5})^{x}=32^{x}[/mm]

Solche Terme führst du nun immer auf die e-Funktion zurück:

[mm]32^{x}= (e^{ln 32})^{x}= e^{x*ln 32}[/mm]

[mm]f(x)=e^{x*ln 32}[/mm]

f[mm]'(x)= e^{x*ln 32}*ln 32[/mm]    (innere Ableitung)
oder, wenn du willst, wieder zurücktransformiert:
[mm]f'(x)=2^{5x}*ln 32[/mm]

2. Weg (ganz ähnlich):

[mm]f(x)= 2^{5x} = (e^{ln 2})^{5x}=e^{x*5*ln 2}[/mm]

[mm]f'(x)=e^{x*5*ln 2}*5*ln 2[/mm]
oder, wenn du willst, wieder zurücktransformiert:
[mm]f'(x)=2^{5x}*5*ln 2[/mm]

Nach den ln-Regeln ist [mm]5*ln 2 = ln 5^{2} = ln 32[/mm]



Bezug
                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:05 So 18.03.2007
Autor: JR87

Danke das hat mich dieser Logarithmusgeschichte schon etwas näher gebracht. Aber wenn ich jetzt mir eine andere Aufgabe angucke

[mm] f(x)=x²*2^{x}. [/mm] Da kommt laut Lösung [mm] f'(x)=2^{x} [/mm] (2x+x²ln2) Wie komme ich auf das Ergebnis

Bezug
                        
Bezug
Ableitungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:09 So 18.03.2007
Autor: JR87

ok hat sich erledigt...bin selbst drauf gekommen...danke

Bezug
                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:14 So 18.03.2007
Autor: angela.h.b.


>
> [mm]f(x)=x²*2^{x}.[/mm] Da kommt laut Lösung [mm]f'(x)=2^{x}[/mm] (2x+x²ln2)
> Wie komme ich auf das Ergebnis

Hallo,

[mm] f(x)=x²*2^{x} [/mm]

[mm] =\underbrace{x^2}_{u}*\underbrace{e^{x*ln(2)}}_{v}. [/mm]

Da leitetst Du nun nach der Produktregel ab:

[mm] f'(x)=u'v+v'u=(x^2)'*(e^{x*ln(2)})+(e^{x*ln(2)})'(x^2). [/mm]

[mm] (e^{x*ln(2)})' [/mm] mußt Du hierbei mit der Kettenregel berechnen, innere*äußere Ableitung.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]