matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Ableitungen
Ableitungen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 Di 28.11.2006
Autor: thomasrichter

Aufgabe
f(x)= [mm] \wurzel{2}x²-\wurzel(5)x^5 [/mm] + [mm] \wurzel(6) [/mm]

Wie kann ich davon die ersten drei Ableitungen bilden?
# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Di 28.11.2006
Autor: angela.h.b.


> f(x)= [mm]\wurzel{2}x²-\wurzel(5)x^5[/mm] + [mm]\wurzel(6)[/mm]
>  Wie kann ich davon die ersten drei Ableitungen bilden?

Hallo,

es ist ja die Ableitung von
[mm] g(x)=x^n [/mm]    
[mm] g'(x)=nx^{n-1}. [/mm]

Weiter ist die Ableitung einer Summe = Summe der Ableitungen.

Du brauchst also für f'(x) nur die Ableitungen von [mm] \wurzel{2}x², \wurzel(5)x^5, \wurzel(6)=\wurzel(6)x^0 [/mm] zu berechnen und zu summieren.

Die Wurzeln müssen Dich nicht weiter kümmern. es sind konstante Vorfaktoren. [mm] h(x)=\wurzel[15]{38}x^4 [/mm] ==> [mm] h'(x)=4*\wurzel[15]{38}x^3 [/mm]

So, die Werkzeuge müßten nun bereitliegen...

Gruß v. Angela

Bezug
                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Di 28.11.2006
Autor: thomasrichter

Kannst du mir in diesem Fall die Antwort vorgeben? Das wäre nett.
# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Di 28.11.2006
Autor: Faithless

[mm]f'''(x) = -60 * \wurzel{5} * x^2[/mm]

den rest dazwischen musste selber machen
wenn du das rauskriegst hast du den rest auch richtig

Bezug
                                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Di 28.11.2006
Autor: thomasrichter

Hallo und danke für die Antworten.
Mir ist nur nicht so richtig die Ableitung von [mm] \wurzel{6} [/mm] klar. Wäre das dann 0* [mm] \wurzel{6}^-1 [/mm]

?

Bezug
                                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 Di 28.11.2006
Autor: M.Rex

Hallo

[mm] \wurzel{6}=\wurzel{6}*x^{0} [/mm]

Jetzt ableiten:

[mm] \underbrace{\wurzel{6}}_{bleibt als Faktor erhalten}*0*x^{-1}=0, [/mm] also stimmt deine Überlegung.

Generell gilt: Die Ableitung einer Zahl c ist immer Null.

Das kannst du dir auch klarmachen, wenn du die Gerade y=c zeichnest.
Diese ist parallel zur x-Achse, hat also die Steigung Null,  genau diese gibt ja die Ableitung an.

Marius



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]