matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenAbleitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Ableitungen
Ableitungen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Zweifel
Status: (Frage) beantwortet Status 
Datum: 21:21 So 12.11.2006
Autor: Trashtalker

Aufgabe
Die 1. bis 3. Ableitung der Kurvenschar: ft(x) =  2x / x² + t

Hallo,


könnte mir bitte jemand die 3 Ableitungen nach der Quotientenregel machen? Ich versuche jetzt seit 2 Stunden krampfhaft diese blöde Kurvenschar abzuleiten. Mein syrischer Freund hat sich auch schon drann probiert und ist kläglich gescheitert. Also an der Sprache oder der Herkunft kann es also nicht gelegen haben, hehe.

Wenn es nicht zuviel verlangt ist, die Schritte bitte ausführlich zu beantworten, weil mein Problem liegt nicht an der Regel selbst, sondern am Zusammenfassen der einzelnen Terme. ( u,u',v,v' )



Vielen Dank, ich reiss hier nämlich gleich die Wände ein :)



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 So 12.11.2006
Autor: chrisno


> Die 1. bis 3. Ableitung der Kurvenschar: ft(x) =  2x / x² +
> t

Bist Du sicher, dass das die Funktion ist? Dann ist t ja eine additive Konstante. Die fällt beim Ableiten weg und [mm] 2x/x^2 [/mm] kannst Du auf 2/x kürzen.

Falls Du [mm] $f_t(x) [/mm] = [mm] \bruch{2x}{x^2+t}$ [/mm] meinst,
dann steht im Zähler die Funktion 2x und im Nenner [mm] ${x^2+t}$. [/mm]

>  Hallo,
>  
>
> könnte mir bitte jemand die 3 Ableitungen nach der
> Quotientenregel machen? Ich versuche jetzt seit 2 Stunden
> krampfhaft diese blöde Kurvenschar abzuleiten. Mein
> syrischer Freund hat sich auch schon drann probiert und ist
> kläglich gescheitert. Also an der Sprache oder der Herkunft
> kann es also nicht gelegen haben, hehe.
>  
> Wenn es nicht zuviel verlangt ist, die Schritte bitte
> ausführlich zu beantworten, weil mein Problem liegt nicht
> an der Regel selbst, sondern am Zusammenfassen der
> einzelnen Terme. ( u,u',v,v' )

Für die erste Ableitung sollte das reichen, schreib die mal hin.

>  
>
>
> Vielen Dank, ich reiss hier nämlich gleich die Wände ein
> :)
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  

Bezug
                
Bezug
Ableitungen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 23:11 So 12.11.2006
Autor: Trashtalker

Ja, die Aufgabe steht so wie sie ist im Cornelsen Brandenburg Analysis Buch.

Habe die 3 Ableitungen zwar vorgegeben bekommen, zum vergleichen, aber die nützen mir recht wenig, wenn ich den Weg  
nicht verstehe.

f'(x) = [mm] -2x^{2} [/mm] + t / [mm] (x^{2}+t)^{2} [/mm]
f''(x) = [mm] 4x^{3} [/mm] - 12t / [mm] (x^{2}+t)^{3} [/mm]
f'''(x) = [mm] 12x^{4} [/mm] - [mm] 72tx^{2} [/mm] + [mm] 12t^{2} [/mm] / [mm] (x^{2}+t)^{4} [/mm]

Habe noch ein Thema offen ( siehe http://www.mathspace.org/read?t=196837 ) , in dem es um die Kurvendiskussion zu dieser Aufgabe geht.

Mein Lehrer meinte, dass wir die Quotientenregel für diese Ableitungen nehmen sollen. Die f'(x) krieg ich ja noch hin, aber bei den anderen passt nichts zusammen, weil ich was falsch mache :/.

Bezug
                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:54 So 12.11.2006
Autor: leduart

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo
Bitte schreib richtige Brüche, wenns um längere Ausdrücke geht
1/2 kann man noch ver stehen, aber x+1/2 kan x+\bruch{1}{2} oder \bruch{x+1}{2} bedeuten.
also f(x)=\bruch{2x}{x^2+t}
u=2x, u'=2 v=x^2+t  v'=2x
also f'=\bruch{2*(x^2+t)-2x*2x}{(x^2+t)^2}
danach u=-2x^2+2t  u'=-4x  v=(x^2+t)^2   v'=2*(x^2+t)*2x
f''=\bruch{-4x*(x^2+t)^2- (-4x)*4x*(x^2+t)}{(x^2+t)^4}
man kann durch (x^2+t) kürzen, weil es in beiden Summanden vorkommt.
f''=\bruch{-4x*{x^2+t)+16x^2}{(x^2+t)^3}
Weiterrechnen und f''' musst du nun selbst.
Wenn ihr nicht hinkommt, schreib eure Rechnungen auf, aber lesbar, vielleicht findet dann jemand eure typischen Fehler.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]