matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Ableitungen
Ableitungen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:37 Fr 03.03.2006
Autor: sonnenblumale

Aufgabe
Berechnen Sie folgende Ableitungen:

1) f(x) = [mm] a^x [/mm]
2) h(y) = [mm] y^{ \ln(y)}*e^{ \sqrt[4]( \tan (\cos y))} [/mm]

Hi!

ad 1) Wie kommt man denn rechnerisch auf f'(x) = [mm] a^x*logx? [/mm] Ich brauch eine schöne Herleitung, sodass der log auftaucht.
Mir ist ja auch klar, dass sich für die exp der ln dann praktisch weghebt.
Bin das Ganze vorher implizit angegangen, und da funktionierts prächtig, nur dass ich dafür die Ableitungsformel für den log verwendet habe, und mir dessen Herleitung auch nicht klar ist. Das läuft ja im Kreis so. Ich brauch als Info eine der beiden Herleitungen, der Rest ergibt sich dann eh durch die Umkehrfunktion.

ad 2) hier die Lösung lt. Lösungsblatt:
h'(x) = [mm] e^{ \ln^2y} [/mm] * 2 [mm] \ln(y) [/mm] * [mm] \bruch{1}{y} [/mm] * [mm] e^{ \sqrt[4]( \tan (\cos y))} [/mm] +
[mm] e^{ \ln^2y} [/mm] * [mm] e^{ \sqrt[4]( \tan (\cos y))} [/mm] * [mm] \bruch{1}{ \sqrt[4]( \tan ( \cos(y)))^3} [/mm] * [mm] \bruch{1}{y} [/mm] * [mm] \bruch{1}{ \cos^2 ( \cos(y))} [/mm] * (- [mm] \sin(y)) [/mm]

meine Verwunderung bezieht sich hier auf das [mm] e^{ \ln^2y} [/mm] ... wo kommt das her? (wo kommt überhaupt e her??)

thx & greetz
sonnenblumale


        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:53 Sa 04.03.2006
Autor: felixf


> Berechnen Sie folgende Ableitungen:
>  
> 1) f(x) = [mm]a^x[/mm]
>  2) h(y) = [mm]y^{ \ln(y)}*e^{ \sqrt[4]( \tan (\cos y))}[/mm]
>  
> Hi!
>  
> ad 1) Wie kommt man denn rechnerisch auf f'(x) = [mm]a^x*logx?[/mm]
> Ich brauch eine schöne Herleitung, sodass der log
> auftaucht.

Also [mm] $\log [/mm] = [mm] \ln$ [/mm] bei dir? :-)

Nun, nimm [mm] $a^x [/mm] = [mm] \exp(\log a^x) [/mm] = [mm] \exp(x \log [/mm] a)$ und wende die Kettenregel an.

> Mir ist ja auch klar, dass sich für die exp der ln dann
> praktisch weghebt.
>  Bin das Ganze vorher implizit angegangen, und da
> funktionierts prächtig, nur dass ich dafür die
> Ableitungsformel für den log verwendet habe, und mir dessen
> Herleitung auch nicht klar ist. Das läuft ja im Kreis so.
> Ich brauch als Info eine der beiden Herleitungen, der Rest
> ergibt sich dann eh durch die Umkehrfunktion.

Was genau brauchst du fuer Herleitungen? Das [mm] $\log'x [/mm] = 1/x$ ist, und das ...? Das [mm] $\log'x [/mm] = 1/x$ ist folgt mit der Regel fuer Umkehrfunktionen aus [mm] $\exp'(x) [/mm] = [mm] \exp(x)$, [/mm] willst du davon eine Herleitung?

> ad 2) hier die Lösung lt. Lösungsblatt:
>  h'(x) = [mm]e^{ \ln^2y}[/mm] * 2 [mm]\ln(y)[/mm] * [mm]\bruch{1}{y}[/mm] * [mm]e^{ \sqrt[4]( \tan (\cos y))}[/mm]
> +
> [mm]e^{ \ln^2y}[/mm] * [mm]e^{ \sqrt[4]( \tan (\cos y))}[/mm] * [mm]\bruch{1}{ \sqrt[4]( \tan ( \cos(y)))^3}[/mm]
> * [mm]\bruch{1}{y}[/mm] * [mm]\bruch{1}{ \cos^2 ( \cos(y))}[/mm] * (-
> [mm]\sin(y))[/mm]
>  
> meine Verwunderung bezieht sich hier auf das [mm]e^{ \ln^2y}[/mm]
> ... wo kommt das her? (wo kommt überhaupt e her??)

Nun: [mm] $y^{\ln y} [/mm] = [mm] \exp(\ln y^{\ln y}) [/mm] = [mm] \exp(\ln [/mm] y [mm] \cdot \ln [/mm] y) = [mm] \exp(\ln^2 [/mm] y)$. Und per Definition ist ja [mm] $\exp(x) [/mm] = [mm] e^x$. [/mm]

Beantwortet das deine Fragen?

LG Felix



Bezug
                
Bezug
Ableitungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:47 So 05.03.2006
Autor: sonnenblumale

Hi Felix!

Danke, Frage perfekt beantwortet!

lg
sonnenblumale

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]