matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisAbleitungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Ableitungen
Ableitungen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 Di 08.11.2005
Autor: Magnia

Hallo hänge an der Ableitung von
[mm] f(x)=e^x/x^2 [/mm]

f`(x)= [mm] (e^x*x^2-e^x+2x)/x^4 [/mm]
nun hänge ich bei der zweiten ableitung deswegen habe ich es mal anders gemacht :

[mm] e^x/x^2 [/mm] = [mm] e^x*x^-2 [/mm]
produktregel =
[mm] f`(x)=e^x*x^-2+e^x*-2x^-3 [/mm]
produktregel :
f``(x)= [mm] (e^x*x^-2+e^x*-2x^-3)+(e^x*-2x^-3+e^x*6x^-4) [/mm]
[mm] e^x(x^-2-4x^-3+6x^-4) [/mm]
könnte das hinkommen ?
wenn ich nämlich die wps bestimmen will geht das unter der pq formel nicht
deswegen frag ich mich ob die abl. überhaupt richtig ist?
geht es ev. noch einfacher als ich es habe ?
danke


        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Di 08.11.2005
Autor: Jockal

Hallo zurück!

> Hallo hänge an der Ableitung von
> [mm]f(x)=e^x/x^2[/mm]
>  
> f'(x)= [mm](e^x*x^2-e^x+2x)/x^4[/mm]

Im Zähler dieser Ableitung hat sich ein Fehler eingeschlichen: Das letzte "+" ist deplaziert. Es muss heißen:

> f'(x)= [mm](e^x*x^2-e^x*2x)/x^4[/mm]

Vielleicht hast Du Dich aber auch nur vertippt...

>  nun hänge ich bei der zweiten ableitung deswegen habe ich
> es mal anders gemacht :
>  
> [mm]e^x/x^2[/mm] = [mm]e^x*x^-2[/mm]
>  produktregel =
>  [mm]f'(x)=e^x*x^-2+e^x*-2x^-3[/mm]

Das ist absolut korrekt, und kommt mit der Quotientenregel auch so raus (muss ja, sonst wären diese Regeln ja Käse!)

>  produktregel :
>  f''(x)= [mm](e^x*x^-2+e^x*-2x^-3)+(e^x*-2x^-3+e^x*6x^-4)[/mm]
>  [mm]e^x(x^-2-4x^-3+6x^-4)[/mm]
>  könnte das hinkommen ?

Könnte nicht nur, sondern kommt tatsächlich hin. Ja. Absolut richtig.

>  wenn ich nämlich die wps bestimmen will geht das unter der
> pq formel nicht

Die Wendepunkte? Ja, die kann man da jetzt suchen in den Nullstellen der zweiten Ableitung...
Was die pq formel ist, weiß ich leider nicht, aber ich gebe Dir mal eine Kurzanleitung zum finden der Nullstellen:

Damit diese zweite Abl. Null ist, muss ja einer der Faktoren Null sein, das kann bei [mm]e^x[/mm] schonmal nicht passieren,
also müsste [mm]x^-2-4x^-3+6x^-4=0[/mm] sein. Schreibe zum Auflösen dieser Gleichung die negativen Exponenten wieder als Brüche, und fasse die drei Brüche auf einen zusammen (Hauptnenner bilden, er ist [mm]x^4[/mm]).
Wenn der entstehende Bruch nun Null sein soll, so muss sein Zähler Null sein, und der Zähler ist ein "gewöhnlicher" quadratischer Ausdruck, da kann man also mit der Lösungsformel (="Mitternachtsformel") rangehen, wobei man an der Diskriminante sieht: Keine Lösung.
Und ebenso ist es halt auch mit den Wendepunkten: Der Graph hat keine.

(Solltest Du mit "wps" nicht die Wendepunkte gemeint haben, dann bitte ich um Entschuldigung, dann weiß ich nicht, was Du meinst...)

>  deswegen frag ich mich ob die abl. überhaupt richtig ist?

Bis auf die durch Quotientenregel bestimmte Ableitung (das "+", s.o.) war alles richtig soweit.

>  geht es ev. noch einfacher als ich es habe ?

Nein, die Ableitung dieser Funktion bestimmt sich entweder mit der Quotienten- oder der Produktregel (je nach Geschmack, welche Du lieber hast), der Arbeitsaufwand ist in beiden Fällen etwa gleich, und das Ergebnis sollte natürlich auch gleich sein.
Ein schnellerer Weg zur zweiten Ableitung ist mir nicht bekannt, und die Wendepunkte wüsste ich jetzt auch nicht anders zu bestimmen...

>  danke
>  

Nichts zu danken,
ich hoffe ich konnte helfen,
MfG, Jockal

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]