matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitung von e Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Ableitung von e Funktion
Ableitung von e Funktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung von e Funktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:08 So 10.01.2010
Autor: Benja91

Ich habe diese Frage in keinem anderen Forum gestellt:

Hallo,
ich stehe vor folgendem Problem. Mir ist nicht klar, wann ich immer genau die Produktregel verwenden muss und wann es nicht notwendig ist.
Bsp.:
[mm] f(x)=-2e^{3x} [/mm] Muss ich hier die Produktregel verwenden oder kann ich einfach folgendermaßen ableiten?:
f'(x)=3e{3x}

Vielen Dank für eure Hilfe :)


        
Bezug
Ableitung von e Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 So 10.01.2010
Autor: pythagora

Hey,

>  ich stehe vor folgendem Problem. Mir ist nicht klar, wann
> ich immer genau die Produktregel verwenden muss und wann es
> nicht notwendig ist.

Also, die produktregel wendest du an, wenn du 2 "Teile" (Faktoren) hast, die von der Variable (x) abhängen, also bei v(x)*u(x),  aber nicht bei 2*v(x), weil der faktor (die 2) nicht von x abhängt, ok??
Wie sieht das hierbei aus, Produktregel ja oder nein??:
1.) [mm] 5x^{5} [/mm]
2.) [mm] 2x^{2}*x^3 [/mm]
3.) [mm] 2x^{2x} [/mm]
???

>  Bsp.:
>  [mm]f(x)=-2e^{3x}[/mm] Muss ich hier die Produktregel verwenden
> oder kann ich einfach folgendermaßen ableiten?:
>  f'(x)=3e{3x}

f'(x)=-6e{3x} wäre es dann, ok??

LG
pythagora



Bezug
                
Bezug
Ableitung von e Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 So 10.01.2010
Autor: Benja91


>  Wie sieht das hierbei aus, Produktregel ja oder nein??:
>  1.) [mm]5x^{5}[/mm] --> keine Produktregel

>  2.) [mm]2x^{2}*x^3[/mm]-->Produktregel
>  3.) [mm]2x^{2x}[/mm]-->  keine Produktregel

Stimmt dies?
zu 1.) [mm] f'(x)=25*x^{4} [/mm]
zu 2.) Laut der Produktregel müsste dann doch f'(x)=10*x{4} sein, oder?

Es wäre toll, wenn ihr nochmals schauen könntet ob meine Ableitungen richtig sind.
Vielen Dank :)



Bezug
                        
Bezug
Ableitung von e Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 So 10.01.2010
Autor: pythagora

Hey,
> >  Wie sieht das hierbei aus, Produktregel ja oder nein??:

>  >  1.) [mm]5x^{5}[/mm] --> keine Produktregel

>  >  2.) [mm]2x^{2}*x^3[/mm]-->Produktregel
>  >  3.) [mm]2x^{2x}[/mm]-->  keine Produktregel
>  Stimmt dies?
>  zu 1.) [mm]f'(x)=25*x^{4}[/mm]
>  zu 2.) Laut der Produktregel müsste dann doch
> f'(x)=10*x{4} sein, oder?

Sehr gut, du hast es verstanden^^
LG und schönes WE noch
pythagora

Bezug
                                
Bezug
Ableitung von e Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:41 So 10.01.2010
Autor: pythagora

für 3.) müsstest du übrigens die kettenregel anwenden^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]