matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitung mit ln
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Ableitung mit ln
Ableitung mit ln < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung mit ln: Hilfe um Vereinfachung
Status: (Frage) beantwortet Status 
Datum: 16:58 Mo 08.12.2008
Autor: inuma

Aufgabe
Leiten sie fk(x) = [mm] \bruch{ln(k+x^{2}}{kx} [/mm]

Hallo,

ich muss von dieser Funktion die Ableitung finden.

Ich benutez die Quotientenregel

y = [mm] \bruch{u'v - uv'}{v^{2}} [/mm]

u' =  [mm] \bruch{2x}{k+x^{2}} [/mm]

v' = k


einsetezn und so komme ich auf


[mm] \bruch{\bruch{2kx^{2}}{k+x^{2}}-ln(k+x^{2}*k}{(kx)^2} [/mm]

wie kann ich das jetzt besser vereinfachen?




        
Bezug
Ableitung mit ln: erweitern
Status: (Antwort) fertig Status 
Datum: 17:02 Mo 08.12.2008
Autor: Roadrunner

Hallo inuma!


Erweitere den Bruch mit [mm] $\left(k+x^2\right)$ [/mm] .


Gruß vom
Roadrunner


Bezug
                
Bezug
Ableitung mit ln: keine große besserung
Status: (Frage) beantwortet Status 
Datum: 17:08 Mo 08.12.2008
Autor: inuma

hallo, ich ahbe erweitert und komme jetzt auf

[mm] \bruch{2(kx)*(kx+2kx^{3})-ln(k+x^{2})k}{(kx)^{2}} [/mm]

hast du oder jemadn anderes vllt eine idee wie ich weiterkomme?

Bezug
                        
Bezug
Ableitung mit ln: k ausklammern
Status: (Antwort) fertig Status 
Datum: 17:13 Mo 08.12.2008
Autor: M.Rex

Hallo

Klammere mal k aus, und kürze dann.
Ausserdem kannst du den Bruch evtl aufteilen.

Also:

[mm] \bruch{2(kx)\cdot{}(kx+2kx^{3})-ln(k+x^{2})k}{(kx)^{2}} [/mm]
[mm] =\bruch{k[2x(kx+2kx^{3})-ln(k+x^{2})]}{k²x²} [/mm]
[mm] =\bruch{2x(kx+2kx^{3})-ln(k+x^{2})}{kx²} [/mm]
[mm] =\bruch{2x(kx+2kx^{3})}{kx²}-\bruch{ln(k+x^{2})}{kx²} [/mm]
[mm] =\bruch{2kx²+4kx^{4})}{kx²}-\bruch{ln(k+x^{2})}{kx²} [/mm]
[mm] =\bruch{kx²(2+4x²)}{kx²}-\bruch{ln(k+x^{2})}{kx²} [/mm]

Jetzt noch ein wenig kürzen....

Marius

Bezug
                                
Bezug
Ableitung mit ln: ln?
Status: (Frage) beantwortet Status 
Datum: 17:22 Mo 08.12.2008
Autor: inuma

Hallo nochmal, danke für die nette Hilfe

ok nach dem ausklammer uns kürzen kommen ich auf

[mm] 2+4x^{2} [/mm] - [mm] \bruch{ln(k+x^{2})}{kx^{2}} [/mm]

könnte ich noch etwas mit dem ln anstellen

ich habe die funktion mal mit mupad probiert und da bekomme ich mal ende

[mm] \bruch{2x}{kx(x^{2}+k)} [/mm]


Bezug
                                        
Bezug
Ableitung mit ln: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Mo 08.12.2008
Autor: fred97


> Hallo nochmal, danke für die nette Hilfe
>  
> ok nach dem ausklammer uns kürzen kommen ich auf
>  
> [mm]2+4x^{2}[/mm] - [mm]\bruch{ln(k+x^{2})}{kx^{2}}[/mm]
>  
> könnte ich noch etwas mit dem ln anstellen

Lass es doch so stehen !


>  
> ich habe die funktion mal mit mupad probiert und da bekomme
> ich mal ende
>  
> [mm]\bruch{2x}{kx(x^{2}+k)}[/mm]


???????????????????


FRED

>  


Bezug
                                                
Bezug
Ableitung mit ln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Mo 08.12.2008
Autor: inuma

Die von mir angegebene Lösung war etwas, dass mir eine matheprogramm ausgegebne hat und ist wesentlich einfacher als die Zeilen die ich hier erarbeitet hatte

Bezug
                                                        
Bezug
Ableitung mit ln: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 Mo 08.12.2008
Autor: Astor

Also tut mir leid, aber da gibt es nicht viel zu machen.
Wenn ich einen Quotienten ableiten muss, wobei der Zähler eine verkettete Funktion ist, so taucht der ln Term in der Ableitung auf.
Zuerst mal würde ich aus dem gegebenen Quotienten das 1/k vorziehen.
Dann die Quotientenregel anwenden.
Dann erhalte ich: [mm] f'(x)=\frac{1}{k}*\frac{\frac{2x^2}{k+x^2}-ln(k+x^2)}{x^2}[/mm]
Dann kann man noch den Zähler als Quotient schreiben, mit [mm] k+x^2 [/mm] als Nenner.


Bezug
                        
Bezug
Ableitung mit ln: Verrechnet
Status: (Frage) beantwortet Status 
Datum: 18:12 Mo 08.12.2008
Autor: inuma

Ok ich merke gerade, dass ich mich verrechnet habe (entschuldigung)

[mm] \bruch{\bruch{2kx^{2}}{x^{2}+k}-ln(k+x^{2})*k}{kx^{2}} [/mm]

wenn man en bruch mit [mm] x^{2} [/mm] + k erweiter kommt man auf

[mm] \bruch{2kx^2(x^{2}+k)-ln(k-x^2)k}{kx^{2}} [/mm]

gekürtzt

[mm] \bruch{2x^2(x^{2}+k)-ln(k-x^2)}{kx^{2}} [/mm]

vllt findet sich jetzt ein bessere weg

(noch mal danke an alle mithelfer :) )

Bezug
                                
Bezug
Ableitung mit ln: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Mo 08.12.2008
Autor: Astor

Wenn du erweiterst, so musst du Zähler und Nenner mit dem gleichen Term multiplizieren.
Astor

Bezug
                                        
Bezug
Ableitung mit ln: Sinn vom erweitern
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Mo 08.12.2008
Autor: inuma

Hat dann das erweitern überhaubt einen sinn?

Bezug
                                                
Bezug
Ableitung mit ln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:45 Mo 08.12.2008
Autor: Astor

Hallo inuma,
enn du 7/3 mit 5 erweiterst, so steht dann 35/15 da. Es geht hier nicht um erweitern.
Höchstens, wenn du den Zähler (ein Bruch plus ein Term) als einen Quotienten schreiben willst, so musst du den Term mit dem ln erweitern.
Ich habe die Vermutung, dass in der Aufgabenstellung ein Schreinfehler ist.
Ist diese Aufgabe isoliert, als Ableitungsübung, oder soll da eine Kurvendiskussion folgen?
Astor


Bezug
                                        
Bezug
Ableitung mit ln: Sinn
Status: (Frage) beantwortet Status 
Datum: 18:24 Mo 08.12.2008
Autor: inuma

ist das erweitern nicht sinnlos

entschuldigung wegend er doppelpost (wollte es als frage haben)

Bezug
                                                
Bezug
Ableitung mit ln: Doppelbruch
Status: (Antwort) fertig Status 
Datum: 18:48 Mo 08.12.2008
Autor: Roadrunner

Hallo inuma!


Das Erweitern hatten wir doch gerade durchgeführt, um diesen unangenehmen Doppelbruch zu entfernen.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]