matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieAbleitung eines Integrals
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - Ableitung eines Integrals
Ableitung eines Integrals < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung eines Integrals: Lösung einer Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:10 Sa 28.08.2010
Autor: Dodi

Aufgabe
[mm] \bruch{d}{dz}[2\integral_{0}^{\wurzel{z}}{\bruch{1}{\wurzel{2\pi}}e^{-\bruch{u^{2}}{2}} du}] [/mm]

Hallo zusammen!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Erst einmal sorry im Voraus falls ich irgendwelche Forumsregeln missachtet habe, denn dies ist mein erster Beitrag bzw. Frage in diesem Forum. Ich habe mir auf jeden Fall Mühe gegeben alles richtig zu machen. ;)

Nun zu meiner Frage: Ich habe irgendwie einen Knopf bei der oben gestellten Aufgabe und zwar möchte ich wissen wie man diese Aufgabe schnell und "einfach" lösen kann, denn ich glaube zu wissen, dass man bei dieser Aufgabe nicht zuerst integrieren muss um dann abzuleiten.
Es gibt doch einen direkten Weg oder?

Die Lösung lautet: [mm] \bruch{1}{\wurzel{2\pi}}z^{-\bruch{1}{2}}e^{-\bruch{1}{2}z} [/mm] , [mm] z\ge0 [/mm]

Vielen Dank für eure Hilfe!

Gruss Dodi

        
Bezug
Ableitung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Sa 28.08.2010
Autor: felixf

Moin!

> [mm]\bruch{d}{dz}[2\integral_{0}^{\wurzel{z}}{\bruch{1}{\wurzel{2\pi}}e^{-\bruch{u^{2}}{2}} du}][/mm]
>  
> Nun zu meiner Frage: Ich habe irgendwie einen Knopf bei der
> oben gestellten Aufgabe und zwar möchte ich wissen wie man
> diese Aufgabe schnell und "einfach" lösen kann, denn ich
> glaube zu wissen, dass man bei dieser Aufgabe nicht zuerst
> integrieren muss um dann abzuleiten.
> Es gibt doch einen direkten Weg oder?

Ja: definiere $F(t) := [mm] \int_0^t \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^2}{2}} [/mm] du$. Dann sollst du $2 [mm] F(\sqrt{z})$ [/mm] nach $z$ ableiten. Benutze die Kettenregel und beachte, dass nach dem Hauptsatz der Integral- und Differentialrechnung gilt $F'(t) = [mm] \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^2}{2}}$. [/mm]

LG Felix



Bezug
                
Bezug
Ableitung eines Integrals: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:47 Sa 28.08.2010
Autor: Dodi

Vielen Dank Felix!

Genau sowas habe ich gesucht!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]