matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitung eines Funktionsschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Ableitung eines Funktionsschar
Ableitung eines Funktionsschar < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung eines Funktionsschar: Idee ?
Status: (Frage) beantwortet Status 
Datum: 17:01 Mi 23.09.2009
Autor: f4b

Aufgabe
Bilde die Ableitung zu:

[mm] f(x)=x*ln*\bruch{x^2}{t} [/mm]

Hallo,

ich weiß leider garnichts damit anzufangen. was wären die ersten schritte? welche regel müsste ich anwenden: die produktregel? wenn ja, wie?

        
Bezug
Ableitung eines Funktionsschar: Produktregel
Status: (Antwort) fertig Status 
Datum: 17:07 Mi 23.09.2009
Autor: Loddar

Hallo f4b!


MBProduktregel ist eine gute Idee. Allerdings würde ich zunächst die Funktion gemäß MBLogarithmus-Gesetzen umformen:

[mm] $$f_t(x) [/mm] \ = \ [mm] x*\ln\left(\bruch{x^2}{t}\right) [/mm] \ = \ [mm] x*\left[\ln\left(x^2\right)-\ln(t)\right] [/mm] \ = \ [mm] x*\left[2*\ln(x)-\ln(t)\right] [/mm] \ = \ [mm] 2x*\ln(x)-x*\ln(t)$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Ableitung eines Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Mi 23.09.2009
Autor: f4b

wäre es dann mit der produktregel:

f(x)=2x*ln(x)-x*ln(t)

     =2*ln(x)+2x*1/x-x*1/t+1*ln(t)
     =2ln(x)+2-x/t+ln(t)

so richtig?

Bezug
                        
Bezug
Ableitung eines Funktionsschar: Konstante
Status: (Antwort) fertig Status 
Datum: 17:37 Mi 23.09.2009
Autor: Loddar

Hallo f4b!


> wäre es dann mit der produktregel:
>  
> f(x)=2x*ln(x)-x*ln(t)
>  
> =2*ln(x)+2x*1/x-x*1/t+1*ln(t)
>       =2ln(x)+2-x/t+ln(t)

"Vorne" stimmt es, "hinten" nicht mehr.

Bedenke, dass $t_$ bzw. auch [mm] $\ln(t)$ [/mm] wie eine Konstante behandelt wird.


Gruß
Loddar


Bezug
                                
Bezug
Ableitung eines Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Mi 23.09.2009
Autor: f4b

tut mir leid, ich weiß nur, dass eine konstante wegfallen kann. aber die normale ableitung von ln(t) ist für mich 1/t .

wie hieße denn die ableitung richtig?

dann werde ich gleich nochmal versuchen die 2. auf eigene faust zu rechnen !

Bezug
                                        
Bezug
Ableitung eines Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Mi 23.09.2009
Autor: schachuzipus

Hallo f4b,

> tut mir leid, ich weiß nur, dass eine konstante wegfallen
> kann. aber die normale ableitung von ln(t) ist für mich 1/t .

Das wäre richtig, wenn du nach der Variablen [mm] $\mathbf{t}$ [/mm] ableiten würdest, hier wird aber doch nach [mm] $\mathbf{x}$ [/mm] abgeleitet.

[mm] $\ln(t)$ [/mm] ist von x völlig unabhängig und ist eine Konstante, genau wie $5$ oder [mm] $\pi$ [/mm]

Denke dir, statt [mm] $\ln(t)$ [/mm] stünde dort eine $5$.

>  
> wie hieße denn die ableitung richtig?

Nun, das kannst du selber beantworten: wie leitest du [mm] $5\cdot{}x$ [/mm] ab oder [mm] $x\cdot{}\pi$ [/mm]

Wie dann also den hinteren oberen Teil [mm] $x\cdot{}\ln(t)$ [/mm] ...

>  
> dann werde ich gleich nochmal versuchen die 2. auf eigene
> faust zu rechnen !


Gruß

schachuzipus

Bezug
                                                
Bezug
Ableitung eines Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 Mi 23.09.2009
Autor: f4b

okay, ich glaube, es leuchtet mir jetzt auch ein.
also ist die erste ableitung : ft(x)=2ln(x)+2-ln(t)

und die zweite ableitung wäre dann etwas wie: ft(x)=2/x + ln(x)

!?

Bezug
                                                        
Bezug
Ableitung eines Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Mi 23.09.2009
Autor: fencheltee


> okay, ich glaube, es leuchtet mir jetzt auch ein.
>  also ist die erste ableitung : ft(x)=2ln(x)+2-ln(t)

[ok]

>  
> und die zweite ableitung wäre dann etwas wie: ft(x)=2/x +
> ln(x)

ne, schau dir deine 1. ableitung nochmal an.. da hast du 3 summanden, wovon nur einer ein x enthält und abgeleitet wird. der rest entfällt, weil sie konstanten sind

>  
> !?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]