matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitung einer e-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Ableitung einer e-Funktion
Ableitung einer e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung einer e-Funktion: Rechenweg
Status: (Frage) beantwortet Status 
Datum: 12:31 Mi 24.03.2010
Autor: sugar_kane

Aufgabe
f(x)=(a/x)*e^(-x+1)

Hallo,

Ich verzweifel beim finden der ersten Ableitung.
Habe zwar eine Lösung die mir sagt, es sei einfacher den Term umzuformen zu f(x)=(a*e^(-x+1))/x , habe u und v alles rausgeschrieben und es mit der Quotientenregel versucht. Ich komme nur nicht auf die angegebene Lösung von u'= -ae^(-x+1) . Kann mir jemand helfen die Lösung nachzuvollziehen ?

Vielen Dank !

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung einer e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 Mi 24.03.2010
Autor: fred97


> f(x)=(a/x)*e^(-x+1)
>  Hallo,
>  
> Ich verzweifel beim finden der ersten Ableitung.
>  Habe zwar eine Lösung die mir sagt, es sei einfacher den
> Term umzuformen zu f(x)=(a*e^(-x+1))/x , habe u und v alles
> rausgeschrieben und es mit der Quotientenregel versucht.
> Ich komme nur nicht auf die angegebene Lösung von u'=
> -ae^(-x+1)

Das ist nie und nimmer die Ableitung von f !

Nun rechne mal vor, wie Du das mit der Quotienten regel gemacht hast


FRED



>  . Kann mir jemand helfen die Lösung
> nachzuvollziehen ?
>  
> Vielen Dank !
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Ableitung einer e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:48 Mi 24.03.2010
Autor: sugar_kane

Aufgabe
f(x)=(a*e^(-x+1))/x

Mein f'(x)=((a*(e^(-x+1))*x)-(a*e^(-x+1))/x²

Demnach ist mein u'= (e^(-x+1))+a*e^(-x+1)

In der Lösung ist jedoch das u'= -a*e^(-x+1)

Wo liegt mein Fehler, bzw. weshalb ist meine Lösung falsch ?

Bezug
                        
Bezug
Ableitung einer e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Mi 24.03.2010
Autor: M.Rex

Hallo

Du hast:

[mm] f(x)=\bruch{\overbrace{a*e^{-x+1}}^{u}}{\underbrace{x}_{v}} [/mm]

also:

[mm] f'(x)=\bruch{\overbrace{a*(e^{-x+1}*(-1))}^{u' (Kettenregel)}*\overbrace{x}^{v}-\overbrace{1}^{v'}*\overbrace{a*e^{-x+1}}^{u}}{\underbrace{x^{2}}_{v^{2}}} [/mm]

Marius

Bezug
                                
Bezug
Ableitung einer e-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:14 Mi 24.03.2010
Autor: sugar_kane

Super vielen vielen Dank !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]