matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitung e Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Ableitung e Funktion
Ableitung e Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung e Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Di 21.05.2013
Autor: jktz8432

Kann mir jemand mal bitte sagen warum die Ableitung von
f(x) = [mm] \bruch{2}{e^{2*x}+1} [/mm]   f'(x) = [mm] \bruch{-4*e^{2*x}}{(e^{2*x} +1)²} [/mm] ist?


Wenn ich rechne mit f(x) = 2 * [mm] (e^{2*x}+1)^{-1} [/mm] dann komme ich auf

f'(x) = [mm] (e^{2*x}+1)^{-1} [/mm] + (-2 * [mm] (e^{2*x}+1)^{-2} [/mm] * [mm] 2*e^{2*x}) [/mm]

also f'(x) =  [mm] (e^{2*x}+1)^{-1} [/mm] - [mm] 4*e^{2*x} [/mm] * [mm] (e^{2*x}+1)^{-2} [/mm]

Warum fällt [mm] (e^{2*x}+1)^{-1} [/mm]  weg?  

Danke

        
Bezug
Ableitung e Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Di 21.05.2013
Autor: MathePower

Hallo  jktz8432,

> Kann mir jemand mal bitte sagen warum die Ableitung von
>  f(x) = [mm]\bruch{2}{e^{2*x}+1}[/mm]   f'(x) =
> [mm]\bruch{-4*e^{2*x}}{(e^{2*x} +1)²}[/mm] ist?

>


Hier meinst Du dies hier:
  
[mm]f'(x) = \bruch{-4*e^{2*x}}{(e^{2*x} +1)^{2}}[/mm]

Warum das so ist, siehe  Quotientenregel.


>
> Wenn ich rechne mit f(x) = 2 * [mm](e^{2*x}+1)^{-1}[/mm] dann komme
> ich auf
>  
> f'(x) = [mm](e^{2*x}+1)^{-1}[/mm] + (-2 * [mm](e^{2*x}+1)^{-2}[/mm] *
> [mm]2*e^{2*x})[/mm]
>  
> also f'(x) =  [mm](e^{2*x}+1)^{-1}[/mm] - [mm]4*e^{2*x}[/mm] *
> [mm](e^{2*x}+1)^{-2}[/mm]
>  
> Warum fällt [mm](e^{2*x}+1)^{-1}[/mm]  weg?  
>


Du hast hier offenbar die Produktregel angewendet.

Damit:

[mm]f'\left(x\right)= \left(\ 2 * (e^{2*x}+1)^{-1} \ \right)'=2'*(e^{2*x}+1)^{-1}+2*\left( \ (e^{2*x}+1)^{-1} \ \right)'[/mm]

Dabei verschwindet die Ableitung der Konstanten 2.


> Danke


Gruss
MathePower

Bezug
                
Bezug
Ableitung e Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 Di 21.05.2013
Autor: jktz8432

Aber warum fällt dann [mm] 2'\cdot{}(e^{2\cdot{}x}+1)^{-1} [/mm] weg?

damit das wegfällt müsste doch 2' = 0 sein oder? Ich hab bisher immer nur gelernt, dass die Konstante wegfällt, aber dann müsste ja [mm] (e^{2\cdot{}x}+1)^{-1} [/mm] stehen bleiben

Bezug
                        
Bezug
Ableitung e Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 Di 21.05.2013
Autor: MathePower

Hallo jktz8432,

> Aber warum fällt dann [mm]2'\cdot{}(e^{2\cdot{}x}+1)^{-1}[/mm]
> weg?
>  
> damit das wegfällt müsste doch 2' = 0 sein oder? Ich hab


Ja, das ist auch so.

Die Ableitung einer Konstanten, hier 2,  is 0.


> bisher immer nur gelernt, dass die Konstante wegfällt,
> aber dann müsste ja [mm](e^{2\cdot{}x}+1)^{-1}[/mm] stehen bleiben


Nein, die Konstante fällt beim Ableiten nicht weg,
aber deren Ableitung.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]