matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenAbleitung bilden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Ableitung bilden
Ableitung bilden < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:39 Di 09.10.2007
Autor: albafreak

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wir sollen die Ableitung bilden von :

f(x)= [mm] \bruch{-32x}{(x²-t)²} [/mm]

Und da bin ich mir nicht sicher ob ich das richtig habe...
Ich habe das mit Hilfe der Produktregel gemacht...

f'(x)= [mm] \bruch{-32*(x²-t)²-(-32x*2*(x²-t))}{(x²-t)^4} [/mm]

= [mm] \bruch{-32*(x^4-2tx²+t²)-(-64x^3+32tx)}{(x²-t)^4} [/mm]

= [mm] \bruch{-32x^4+64tx²-32t²+64x^3+32tx}{(x²-t)^4} [/mm]

=[mm] \bruch{-32x^4+64tx²-32t²+64x^3-32tx}{(x²-t)^4} [/mm]

=[mm] \bruch{-32*(x^4-2tx²+t²-2x^3+tx)}{(x²-t)^4} [/mm]

Und weiter bin ich nicht gekommen...
Ist das überhaupt soweit richtig? Wenn nicht, wie löse ich das dann???

Liebe Grüße...


(tut mir leid, hab in der 1. Funktion das x vergessen... und davon (also von 32x) ist doch 32 oder nicht?!... wäre dann, also wenn das nun 32x ist die Lösung so richtig oder auch nicht? )

        
Bezug
Ableitung bilden: leider falsch
Status: (Antwort) fertig Status 
Datum: 22:43 Di 09.10.2007
Autor: Loddar

Hallo albafreak!


Diese Ableitung ist falsch. Schließlich ergibt die Ableitung von $-32_$ den Wert [mm] $\red{0}$ [/mm] !


Man kann hier aber auch die MBQuotientenregel umgehen, wenn man wie folgt umformt:

[mm] $$f_t(x) [/mm] \ = \ [mm] \bruch{-32}{\left(x^2-t\right)^2} [/mm] \ = \ [mm] -32*\left(x^2-t\right)^{-2}$$ [/mm]
Nun mit MBPotenzregel (in Verbindung mit der MBKettenregel) ableiten.

Gruß
Loddar


Bezug
        
Bezug
Ableitung bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 Di 09.10.2007
Autor: angela.h.b.


> Wir sollen die Ableitung bilden von :
>  
> f(x)= [mm]\bruch{-32x}{(x²-t)²}[/mm]
>  
> Und da bin ich mir nicht sicher ob ich das richtig habe...
>  Ich habe das mit Hilfe der Produktregel gemacht...
>  
> f'(x)= [mm]\bruch{-32*(x²-t)²-(-32x*2*(x²-t))}{(x²-t)^4}[/mm]

Hallo,

Produktregel ist schonmal eine gute Idee.
Allerdings mußt Du beim Ableiten von (x²-t)² die Kettenregel verwenden, also äußere*innere Ableitung. Und die innere Ableitung hast Du vergessen.

Gruß v. Angela

Bezug
                
Bezug
Ableitung bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:39 Di 09.10.2007
Autor: albafreak

Wie lautet denn die Ableitung von (x²-t)² ?
Weil ich das in dem Fall nicht verstehe wegen dem t....
Oder ist das auch einfach 1 die Ableitung von t?

Wäre das dann:

f'(x)= [mm] \bruch{-32*(x^4-2tx²+t²-2x^3+tx)}{2*(2x-1)} [/mm] ???

Bezug
                        
Bezug
Ableitung bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 00:54 Mi 10.10.2007
Autor: Event_Horizon

Hallo!

Das t mußt du wie eine Konstante, also wie eine beliebige Zahl auffassen. Was ist denn die Ableitung von (x²-5)² ? Wenn du das berechnen kannst, mußt du nur überall die 5 gegen t austauschen.

Neben der o.g. Kettenregel gibt es noch ne zweite Möglichkeit, diesen Ausdruck abzuleiten. Und zwar könntest du mit Hilfe der 2. Bin. Formel zunächst die Klammer auflösen, und im Anschluss ableiten. Eleganter ist es allerdings, wenn du das nach der Kettenregel schaffst

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]