matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Ableitung bilden...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Ableitung bilden...
Ableitung bilden... < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung bilden...: Ketten- oder Produktregel?
Status: (Frage) beantwortet Status 
Datum: 16:12 Do 16.12.2004
Autor: Axel

Halli Hallo,
ich stehe hier vor einem kleinen Problem mit dem Ableiten einer Funktion:
y=e^(x*ln(x))
Davon möchte ich jetzt die erste Ableitung bilden. Ich weiss, dass ich was mit Produkt- und/oder Kettenregel machen muss, komme aber nicht drauf. Habe mir schon mein Hirn zermartert, bevor ich hierher kam. Ich hoffe ihr könnt mir eine kleine Hilfestellung geben.
Danke,
Axel

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung bilden...: Ketten- UND Produktregel ...
Status: (Antwort) fertig Status 
Datum: 16:35 Do 16.12.2004
Autor: Loddar

Hallo Axel,

[willkommenmr] !!!


$y = [mm] e^{x*ln(x)}$ [/mm]

>  Davon möchte ich jetzt die erste Ableitung bilden. Ich
> weiss, dass ich was mit Produkt- und/oder Kettenregel
> machen muss, komme aber nicht drauf. Habe mir schon mein
> Hirn zermartert, bevor ich hierher kam. Ich hoffe ihr könnt
> mir eine kleine Hilfestellung geben.

Bei dieser Funktion musst Du die Kettenregel und die Produktregel anwenden!

Kennst Du die Ableitung von [mm] $e^z$ [/mm] ??
Das schöne an der e-Funktion ist ja folgendes: [mm] $(e^z)' [/mm] = [mm] e^z$. [/mm]

Da wir hier eine verkettete Funktion haben, müssen wir noch die Kettenregel anwenden, d.h. noch mit der "inneren Ableitung" multiplizieren.

Für die Ableitung der inneren Funktion z = x * ln(x) müssen wir nun die Produktregel anwenden.

Vielleicht ermittelst Du diese innere Ableitung z' erstmal separat und bildest dann die Gesamtableitung.

Schreib' doch einfach mal Deine Lösungsvorschläge oder -versuche. Dann können wir diese korrigieren (falls nötig ;-) ).

Grüße Loddar

Bezug
        
Bezug
Ableitung bilden...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Do 16.12.2004
Autor: Axel

Danke für die nette Begrüßung und den Tip zur Lösung meines Problems.

Ich bin jetzt folgendermaßen vorgegangen:
y=e^(x*ln(x))

1. Die Ableitung von e^(x*ln(x)) ist eben e^(x*ln(x))
2. Die Ableitung von x*ln(x) ist 1*ln(x)+1/x*x. Richtig?
3. Zusammengestzt ergibt sich y'=(e^(x*ln(x)))*(1*ln(x)+1/x*x)
Ist das richtig oder habe ich einen Fehler gemacht?
Danke nochmal,
Axel

Bezug
                
Bezug
Ableitung bilden...: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Do 16.12.2004
Autor: cremchen

Halli hallo!

> Ich bin jetzt folgendermaßen vorgegangen:
>  y=e^(x*ln(x))
>  
> 1. Die Ableitung von e^(x*ln(x)) ist eben e^(x*ln(x))

[ok]

>  2. Die Ableitung von x*ln(x) ist 1*ln(x)+1/x*x. Richtig?

[ok]

>  3. Zusammengestzt ergibt sich
> y'=(e^(x*ln(x)))*(1*ln(x)+1/x*x)

[ok]
schöner sieht es aber aus wenn du es so schreibst:
[mm] y'(x)=(1+ln(x))*e^{x*lnx} [/mm]
[grins]

>  Ist das richtig oder habe ich einen Fehler gemacht?

Wunderbar!

Liebe Grüße
Ulrike

Bezug
        
Bezug
Ableitung bilden...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:12 Do 16.12.2004
Autor: Axel

Ich muss mich entschuldigen. Ich wollte den vorhergegangenen Text natürlich als eine Frage formulieren habe ihn aber aus versehen als eine Mitteilung abgeschickt. BBin halt noch ein Newbie hier.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]