matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitung arcustangens
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Ableitung arcustangens
Ableitung arcustangens < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung arcustangens: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 Fr 08.01.2010
Autor: fine89

Aufgabe
Bestimmen Sie die 1. und 2. Ableitung folgender Funktion  

arctan | (1+x)/(x-1)|     für x=nicht 1  

Wie lauten die Ableitungen und welchen Weg benutze ich um darauf zu kommen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung arcustangens: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Fr 08.01.2010
Autor: MontBlanc

Hallo,

> Bestimmen Sie die 1. und 2. Ableitung folgender Funktion  
>
> arctan | (1+x)/(x-1)|     für x=nicht 1
> Wie lauten die Ableitungen und welchen Weg benutze ich um
> darauf zu kommen?

es laufen hier wirklich ein Haufen netter Menschen rum, die Dir gerne helfen. Allerdings setzt dies voraus, dass Du dich ein wenig an die Forenregeln hältst, die u.A. besagen, dass ein freundlicher Umgangston an den Tag zu legen ist und man seine Gedanken und Lösungsansätze zu der Frage hinzupostet.

Nun zu deiner Frage:

Benutze Ketten- und Quotientenregel nacheinander. Mache Dir aber vorher Gedanken darüber, wie Du arctan(...) ableiten kannst (Stichwort Ableitung von Umkehrfunktionen).

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

LG,

exeqter

Bezug
                
Bezug
Ableitung arcustangens: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:59 Sa 09.01.2010
Autor: fine89

Mein Ansatz ist ,dass die Ableitung einer Umkehrfunktion 1/(f´(x)) ist, in diesem Fall komm ich auf 1/(tan| (1+x)/(1-x)|). Ist das richtig?

Bezug
                        
Bezug
Ableitung arcustangens: Antwort
Status: (Antwort) fertig Status 
Datum: 10:49 Sa 09.01.2010
Autor: M.Rex

Hallo

> Mein Ansatz ist ,dass die Ableitung einer Umkehrfunktion
> 1/(f´(x)) ist,

Der Ansatz ist korrekt

in diesem Fall komm ich auf 1/(tan|

> (1+x)/(1-x)|). Ist das richtig?

Nein, so einfach ist das nicht, wenn du [mm] \arctan\left(\bruch{1+x}{1-x}\right) [/mm] wie eXeQteR vorgeschlagen hat mit MBQuotientenregel und MBKettenregel ableitest, erhältst du

[mm] \left(\arctan\left(\bruch{1+x}{1-x}\right)\right)' [/mm]
[mm] =\underbrace{\bruch{1}{\left(\bruch{1+x}{1-x}\right)^{2}+1}}_{\text{äußere Abl.}}*\underbrace{\bruch{(1*(x-1))-((-1)*(x+1))}{(1-x)^{2}}}_{\text{innere Abl.}} [/mm]

Das ganze kann man natürlich noch zusammenfassen....

Bei deinem Weg hast du vergessen, die Ableitung des Tangens zu ermitteln.

Marius

Bezug
                                
Bezug
Ableitung arcustangens: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Mo 11.01.2010
Autor: fine89

Spielen da die Beträge dann keine Rolle?

Bezug
                                        
Bezug
Ableitung arcustangens: Fallunterscheidung
Status: (Antwort) fertig Status 
Datum: 16:55 Mo 11.01.2010
Autor: Roadrunner

Hallo fine!


> Spielen da die Beträge dann keine Rolle?

Doch. Rein formell solltest Du hier eine entsprechende Fallunterscheidung vornehmen.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]