matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenAbleitung allgemein berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Ableitung allgemein berechnen
Ableitung allgemein berechnen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung allgemein berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Mo 10.05.2010
Autor: johnyan

Aufgabe
Es sei A eine m×n-Matrix und [mm] \vec{c} \in \IR^m. [/mm] Berechnen Sie die Ableitung der Funktion

[mm] \vec{f} [/mm] : [mm] \IR^n \to \IR^m, \vec{x} \to A\vec{x}+\vec{c} [/mm]

indem Sie die partiellen Ableitungen bilden und die Ableitungsmatrix angeben. Verifizieren Sie das Ergebnis mit Hilfe der Definition der Ableitung vektorwertiger Funktionen mehrerer Variablen.

also [mm] A\vec{x} [/mm] ist ein m×1 Spaltenvektor, aber wie bilde ich die partiellen Ableitungen davon?

In der Übung haben wir eine ähnliche Aufgabe mit einer konkreten Abbildung gemacht. Da haben wir erst die partiellen Ableitungen in eine Matrix geschrieben. Dann die Definition benutzt:
[mm] \limes_{|\vec{\Delta x}|\rightarrow 0} \bruch{\vec{f}(\vec{x}+\vec{\Delta x})-\vec{f}(\vec{x})-\vec{f}'(\vec{x})(\vec{\Delta x})}{|\vec{\Delta x}|}=0 [/mm]
um zu überprüfen, ob der Grenzwert gegen 0 geht.

aber hier scheitere ich schon am ersten Schritt, die partiellen Ableitungen zu bilden, bitte um Hilfe.

        
Bezug
Ableitung allgemein berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Mo 10.05.2010
Autor: felixf

Hallo!

> Es sei A eine m×n-Matrix und [mm]\vec{c} \in \IR^m.[/mm] Berechnen
> Sie die Ableitung der Funktion
>  
> [mm]\vec{f}[/mm] : [mm]\IR^n \to \IR^m, \vec{x} \to A\vec{x}+\vec{c}[/mm]
>  
> indem Sie die partiellen Ableitungen bilden und die
> Ableitungsmatrix angeben. Verifizieren Sie das Ergebnis mit
> Hilfe der Definition der Ableitung vektorwertiger
> Funktionen mehrerer Variablen.
>  also [mm]A\vec{x}[/mm] ist ein m×1 Spaltenvektor, aber wie bilde
> ich die partiellen Ableitungen davon?

Fang doch mal mit $n = m = 2$ und der Matrix $A = [mm] \pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} }$ [/mm] und [mm] $\vec{c} [/mm] = [mm] \pmat{ c_1 \\ c_2 }$ [/mm] an. Sei [mm] $\vec [/mm] x = [mm] \vec{ x_1 \\ x_2 }$; [/mm] dann rechne mal $A [mm] \vec{x} [/mm] + [mm] \vec{c}$ [/mm] als Funktion von [mm] $x_1$ [/mm] und [mm] $x_2$ [/mm] aus. Das solltest du doch partiell ableiten koennen?

Wenn nicht, schreib genau auf was du getan hast.

LG Felix


Bezug
                
Bezug
Ableitung allgemein berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Mo 10.05.2010
Autor: johnyan

Also dann hätte ich:

[mm] \pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } \vektor{x_1 \\ x_2} [/mm] + [mm] \pmat{ c_1 \\ c_2 } [/mm] = [mm] \vektor{ a_{11}x_1 + a_{12}x_2 + c_1 \\ a_{21}x_1 + a_{22}x_2 + c_2 } [/mm]

wenn ich die Ableitung davon bilde: erhalte ich wieder $ A = [mm] \pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } [/mm] $, wenn ich annehmen darf, dass in A nur Zahlen sind.

Bezug
                        
Bezug
Ableitung allgemein berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Mo 10.05.2010
Autor: felixf

Hallo!

> Also dann hätte ich:
>  
> [mm]\pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } \vektor{x_1 \\ x_2}[/mm]
> + [mm]\pmat{ c_1 \\ c_2 }[/mm] = [mm]\vektor{ a_{11}x_1 + a_{12}x_2 + c_1 \\ a_{21}x_1 + a_{22}x_2 + c_2 }[/mm]
>  
> wenn ich die Ableitung davon bilde: erhalte ich wieder [mm]A = \pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } [/mm],

[ok]

> wenn ich annehmen darf, dass in A nur Zahlen sind.

Ja, darfst du.

Jetzt mach das mal mit einer $n [mm] \times [/mm] m$-Matrix.

LG Felix


Bezug
                                
Bezug
Ableitung allgemein berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:03 Mo 10.05.2010
Autor: johnyan

ok, dann heißt es, dass meine Ableitungsmatrix von f genau A ist. Das habe ich am Anfang auch schon vermutet, nur stand nirgends, dass in A nur Zahlen sind. Wie kann ich denn jetzt zeigen, dass das mit der Definition übereinstimmt?

so hab ich das gedacht:

Also [mm] \Delta \vec{f}=\vec{f}(\vec{x}+\vec{\Delta x})-\vec{f}(\vec{x})=A\vec{\Delta x} [/mm]

[mm] \limes_{|\vec{\Delta x}|\rightarrow 0} \bruch{\vec{f}(\vec{x}+\vec{\Delta x})-\vec{f}(\vec{x})-A\vec{\Delta x}}{|\vec{\Delta x}|}=0 [/mm]

also stimmt die berechnete Ableitung.

Aber wie begründe ich, dass die partiellen Ableitungen zusammen A ergeben? Mir ist das anschaulich durch dein Beispiel klar geworden, aber formal aufgeschrieben?


Bezug
                                        
Bezug
Ableitung allgemein berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Mo 10.05.2010
Autor: felixf

Hallo!

> ok, dann heißt es, dass meine Ableitungsmatrix von f genau
> A ist. Das habe ich am Anfang auch schon vermutet, nur
> stand nirgends, dass in A nur Zahlen sind.

War aber so gemeint :)

> Wie kann ich denn jetzt zeigen, dass das mit der Definition
> übereinstimmt?
>  
> so hab ich das gedacht:
>  
> Also [mm]\Delta \vec{f}=\vec{f}(\vec{x}+\vec{\Delta x})-\vec{f}(\vec{x})=A\vec{\Delta x}[/mm]

Setz das doch mal in [mm] $\limes_{|\vec{\Delta x}|\rightarrow 0} \bruch{\vec{f}(\vec{x}+\vec{\Delta x})-\vec{f}(\vec{x})-\vec{f}'(\vec{x})(\vec{\Delta x})}{|\vec{\Delta x}|}$ [/mm] ein, zusammen mit dem Kandidaten [mm] $\vec{f}'(\vec{x}) [/mm] = A$.

LG Felix


Bezug
                                                
Bezug
Ableitung allgemein berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Mo 10.05.2010
Autor: johnyan

Hihi, hast die Antwort geschrieben, als ich selbst draufkam und editiert habe. Die neue Frage lautet deshalb

wie begründe ich, dass die partiellen Ableitungen zusammen A ergeben? Mir ist das anschaulich durch dein Beispiel klar geworden, aber formal aufgeschrieben?

Bezug
                                                        
Bezug
Ableitung allgemein berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Di 11.05.2010
Autor: felixf

Hallo!

> Hihi, hast die Antwort geschrieben, als ich selbst draufkam
> und editiert habe. Die neue Frage lautet deshalb
>
> wie begründe ich, dass die partiellen Ableitungen zusammen
> A ergeben? Mir ist das anschaulich durch dein Beispiel klar
> geworden, aber formal aufgeschrieben?  

Du schreibst es genauso auf wie im Beispiel. Nur dass du [mm] $\sum_{i=1}^n a_i$ [/mm] verwendest anstelle [mm] $a_1 [/mm] + [mm] a_2$, [/mm] etc.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]