matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitung Winkelfuntionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Ableitung Winkelfuntionen
Ableitung Winkelfuntionen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung Winkelfuntionen: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:12 Sa 17.03.2007
Autor: Drainez

Ich hatte deswegen hier schon einmal eine Frage zu diesem Thema gestellt, worum es zur Ableitung der sinusfunktion ging. Diese wurde mir auch echt erstklassig beantworten. Nu steh ich aber vor dem Problem cosinus und tangens. Die Art und Weise wie man mir das mit der sinus funktion erklärt hat, also das sin(dx)/dx=1 im bogenmaß ist und so weiter, hab ich zwar verstanden, kann es aber nicht auf andere funktionen anwenden.
Könnte mir einer das bitte noch an der cosinus- ( f(x)=cos(x) f´(x)=-sin(x)) und der tangensfuntion (f(x)=tan(x) f´(x)=??) erklären?

Vielen Dank schonmal

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung Winkelfuntionen: Cos- und Tan-Ableitung
Status: (Antwort) fertig Status 
Datum: 13:38 Sa 17.03.2007
Autor: Infinit

Hallo Drainez,
für die Ableitung des Cosinus und des Tangens kannst Du es Dir einfacher machen, wenn Du akzeptierst, und ich glaube, das machst Du, dass die Ableitung des Sinus der Cosinus ist.

Für die Ableitung des Cosinus sollte man also den Cosinus als Sinus schreiben und dann ableiten. Das ist glücklicherweise mit Hilfe der Additionstheoreme nicht sehr schwer.
$$ [mm] \cos [/mm] x = [mm] \sin(x+ \bruch{\pi}{2}) [/mm] $$ Die Ableitung der rechten Seite ist nicht schwer, da die Ableitung des Sinus ja bereits bekannt ist. An die Kettenregel dabei denken, die liefert Dir hier aber glücklicherweise nur einen Faktor von 1.
Damit bekommt man also
$$ [mm] (\cos [/mm] x [mm] )^{'} [/mm] = (  [mm] \sin(x+ \bruch{\pi}{2}))^{'} [/mm] = [mm] \cos [/mm] (x + [mm] \bruch{\pi}{2} [/mm] ) = - sin x [mm] \, [/mm] . $$

Nun. wo die Ableitung von Sinus und Cosinus bekannt sind, kommst Du mit Hilfe der Quotientenregel sicher alleine drauf, was die Ableitung des Tangens ist, denn
$$ [mm] \tan [/mm] x = [mm] \bruch{\sin x}{\cos x} \, [/mm] . $$
Auch das ist nur ein Einzeiler.
Viel Spaß beim Berechnen wünscht
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]