matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisAbleitung Logarhytmusfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Ableitung Logarhytmusfunktion
Ableitung Logarhytmusfunktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung Logarhytmusfunktion: Frage
Status: (Frage) beantwortet Status 
Datum: 12:29 Sa 16.07.2005
Autor: Alice

Hallo liebe Leute!

Ich möchte von folgender (Nutzen-)Funktion die Grenzrate der Substitution bestimmen:

[mm] U(C_{1},C_{2})=log(C_{1})+(\bruch{1}{1+x})*log (C_{2}) [/mm]

So, Grenzrate der Substitiution wird ja bestimmt, indem ich die Funktion partiell zu den beiden C's ableite, also

[mm] \bruch{dU}{dC_{2}} [/mm]

und

[mm] \bruch{dU}{dC_{1}} [/mm]

und diese dann durcheinander teile:

[mm] \bruch{dC_{2}}{dC_{1}} [/mm]

Das Endergebnis soll sein:

[mm] \bruch{dC_{2}}{dC_{1}}=(1/C_{1})/(1/1+x)*(1/C_{2})=(1+x)\bruch{C_{2}}{C_{1}} [/mm]

Mein Problem nun:

Ich weiß nicht genau, wie man die log-Funktion ableitet und wundere mich, wie für [mm] \bruch{dU}{dC_{2}} [/mm] = [mm] (1/C_{1}) [/mm] herauskommen kann, denn so sieht es doch aus, oder? Da die beiden C's in der Ausgangsfunktion doch mit einem Summenzeichen verbunden sind, wäre ich (egal, wie die logarithmen abegeleitet werden, davon ausgegagen, dass das [mm] C_{1} [/mm] beim ableiten nach [mm] C_{2} [/mm] wegfallen müsste.

Lange rede, kurzer Sinn: Ich würde mich freuen, wenn mir jemand einen Tipp zur Ableitung der Log-Funktion geben könnte ;))

Vielen Dank

        
Bezug
Ableitung Logarhytmusfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 Sa 16.07.2005
Autor: Fire21

Hallo Alice,


Zur Ableitung der log-Fu.:

Die Funktion log: [mm] (0;\infty)\rightarrow \IR, x\mapsto [/mm] log(x)

ist von der Klasse [mm] C^{\infty} [/mm] und es gilt: [mm] log'(x)=\frac{1}{x}. [/mm]

Das folgt entweder aus dem Satz über die Ableitung der Umkehrfunktion, nämlich wenn man log als Umkehrfunktion von exp definiert hat, oder aus dem Hauptsatz der Differential- und Integralrechnung, wenn man log wie folgt definiert hat:
[mm] log(x):=\int_{1}^{x} \frac{1}{t} [/mm] dt

Wenn man dies dann anwendet, kommt man auf genau das Endergebnis, dass du angegeben hast.

[mm] \frac{dU}{dC_{1}} [/mm] = [mm] \frac{1}{C_{2}} [/mm] ist übrigens sicherlich falsch, aber dass dies so ist, wird auch in deinem Endergebnis nicht behauptet.

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]