matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitung 2x^2*ln(x/e)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Ableitung 2x^2*ln(x/e)
Ableitung 2x^2*ln(x/e) < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung 2x^2*ln(x/e): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Do 26.02.2015
Autor: fabpreme

Aufgabe
Untersuchen Sie die gegebene Funktion auf Nullstellen, Extremstellen und Wendepunkt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
ich habe jetzt schon sehr lange im Internet gesucht aber bin einfach nicht fündig geworden :
Ich muss die Funktion [mm] f(x)=2x^2⋅ln(x/e) [/mm] ableiten. Ich weiß, dass man die Kettenregel anwenden muss und [mm] 2x^2 [/mm] kann ich auch ableiten, 4x. Aber das ln(x/e) bringt mich echt zum verzweifeln. Ich dachte immer, dass sich ln und e aufheben.. Ich hoffe jemand kann mir zumindest bei der ersten Ableitung weiterhelfen! :(

Liebe Grüße und einen schönen Abend
fabpreme


        
Bezug
Ableitung 2x^2*ln(x/e): Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Do 26.02.2015
Autor: DieAcht

Hallo fabpreme und [willkommenmr]!


Wir wollen die Funktion

      [mm] f(x):=2x^2*\ln(\frac{x}{e}). [/mm]

ableiten.

1) Möglichkeit: Produktregel mit

      [mm] $u(x):=2x\quad\Rightarrow\quad u'(x)=\ldots$ [/mm] und [mm] $v(x):=\ln(\frac{x}{e})\quad\Rightarrow\quad v'(x)=\ldots$ [/mm]

      [mm] $\Longrightarrow f'(x)=u'(x)*v(x)+u(x)*v'(x)=\ldots$. [/mm]

   Beachte: Im Allgemeinen ist

      [mm] \left(\ln(g(x))\right)'=\frac{1}{g(x)}*g'(x). [/mm] (Kettenregel!)

2. Möglichkeit: Im Allgemeinen gilt:

      [mm] \ln(\frac{x}{y})=\ln(x)-\ln(y). [/mm]

   Beachte: [mm] $\ln(e)=1\$. [/mm]


Gruß
DieAcht

Bezug
                
Bezug
Ableitung 2x^2*ln(x/e): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:00 Do 26.02.2015
Autor: Chris84


> Hallo fabpreme und [willkommenmr]!
>  
>
> Wir wollen die Funktion
>  
> [mm]f(x):=2x^2*\ln(\frac{x}{e}).[/mm]
>  
> ableiten.
>  
> 1) Möglichkeit: Produktregel mit
>  
> [mm]u(x):=2x\quad\Rightarrow\quad u'(x)=\ldots[/mm] und
> [mm]v(x):=\ln(\frac{x}{e})\quad\Rightarrow\quad v'(x)=\ldots[/mm]
>  
> [mm]\Longrightarrow f'(x)=u'(x)*v(x)+u(x)*v'(x)=\ldots[/mm].
>  
> Beachte: Im Allgemeinen ist
>  
> [mm]\left(\ln(g(x))\right)'=\frac{1}{g(x)}*g'(x).[/mm]
> (Kettenregel!)
>  
> 2. Möglichkeit: Im Allgemeinen gilt:
>  
> [mm]\ln(\frac{x}{y})=\ln(x)-\ln(y).[/mm]
>  

Nur, um sicher zu gehen: Auch hier braucht man anschliessend die Produktregel....

> Beachte: [mm]\ln(e)=1\[/mm].
>  
>
> Gruß
>  DieAcht


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]