matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenAbleitung - Quotientenregel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Rationale Funktionen" - Ableitung - Quotientenregel
Ableitung - Quotientenregel < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung - Quotientenregel: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:24 Do 21.01.2010
Autor: allbrecher

Aufgabe
[mm] \bruch{x^{2}-x-6}{3x+6} [/mm]

Hi,

wir haben heute in der Schule die Quotientenregel hergeleitet und ich wollte nun wissen, ob ich sie richtig anwende, also:

[mm] \bruch{u'(x)*v(x)-u(x)*v'(x)}{v(x)^{2}} [/mm]

[mm] u(x)=(x^{2}-x-6) [/mm]
v(x)=(3x+6)
u'(x)=(2x-1)
v'(x)=(3)

[mm] \bruch{(2x-1)*(3x+6)-(x^{2}-x-6)*(3)}{(3x+6)^{2}} [/mm]

= [mm] \bruch{6x^{2}+12x-3x-6-3x^{2}-3x-18}{(3x-6)(3x-6)} [/mm]

= [mm] \bruch{3x^{2}+6x-24}{9x^{2}+36x+36} [/mm]

So weit bin ich bis jetzt gekommen. Kann ich nun noch etwas vereinfachen oder ist die Aufgabe jetzt fertig?

Gruß
allbrecher



        
Bezug
Ableitung - Quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Do 21.01.2010
Autor: fred97


> [mm]\bruch{x^{2}-x-6}{3x+6}[/mm]
>  Hi,
>  
> wir haben heute in der Schule die Quotientenregel
> hergeleitet und ich wollte nun wissen, ob ich sie richtig
> anwende, also:
>  
> [mm]\bruch{u'(x)*v(x)-u(x)*v'(x)}{v(x)^{2}}[/mm]
>  
> [mm]u(x)=(x^{2}-x-6)[/mm]
>  v(x)=(3x+6)
>  u'(x)=(2x-1)
>  v'(x)=(3)
>  
> [mm]\bruch{(2x-1)*(3x+6)-(x^{2}-x-6)*(3)}{(3x+6)^{2}}[/mm]
>  
> = [mm]\bruch{6x^{2}+12x-3x-6-3x^{2}-3x-18}{(3x-6)(3x-6)}[/mm]

Hier ist was falsch. Richtig: [mm]\bruch{6x^{2}+12x-3x-6-3x^{2}+3x+18}{(3x-6)(3x-6)}[/mm]



     $-*-=+$


FRED

>  
> = [mm]\bruch{3x^{2}+6x-24}{9x^{2}+36x+36}[/mm]
>  
> So weit bin ich bis jetzt gekommen. Kann ich nun noch etwas
> vereinfachen oder ist die Aufgabe jetzt fertig?
>  
> Gruß
>  allbrecher
>  
>  


Bezug
        
Bezug
Ableitung - Quotientenregel: Hinweis
Status: (Antwort) fertig Status 
Datum: 17:33 Do 21.01.2010
Autor: Loddar

Hallo allbrecher!



> [mm]\bruch{(2x-1)*(3x+6)-(x^{2}-x-6)*(3)}{(3x+6)^{2}}[/mm]

[ok] Bis hierher stimmt alles.

  

> = [mm]\bruch{6x^{2}+12x-3x-6-3x^{2}-3x-18}{(3x-6)(3x-6)}[/mm]

Auf die Vorzeichenfehler im Zähler hat Dich Fred bereits hingewiesen.
Aber auch im Nenner sind plötzlich falsche Vorzeichen aufgetaucht.

Sowie folgender dringender Hinweis: nie im Nenner die Klammern ausmultiplizieren.
Denn spätestens mit der 2. Ableitung macht man sich ansonsten das Zusammenfassen und Vereinfachen unnötig schwer.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]