matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitung + vereinfachen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Ableitung + vereinfachen
Ableitung + vereinfachen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung + vereinfachen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 14:38 Fr 05.12.2008
Autor: larifari

Aufgabe
Ableitung f(x)=arcsin[(x+1)(x-1)^-1]

Hallo,
folgende Sache beschäftigt mich und ich hab das Gefühl, dass da irgendwo der Wurm drin ist.

Ableitung sollte ja durch innere x äußere Ableitung entstehen.

Ich komm also auf folgendes Ergebnis:

[mm] 1/wurzel{1-(x+1)^2/(x-1)^2} [/mm] (Ableitung arcsin) * -2/(x-1)² (Ableitung von (x+1)/(x-1).

Mit den beiden Ableitungen komme ich auf: [mm] -2/wurzel{1-(x+1)^2/(x-1)^2}*(x-1)². [/mm]

Ich hab noch versucht das ganze zu vereinfachen, jedoch bisher ohne Erfolg. Also Ergebnis muss rauskommen: 1/(x-1)*(-x)^-0,5.

Hab das Gefühl, dass ist eigentlich recht einfach ist, jedoch steh ich irgendwie auf den Schlauch und komm nicht dahinter. Wäre nett wenn mir jeman auf die Sprünge hilft.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung + vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 Fr 05.12.2008
Autor: M.Rex

Hallo

Bevor du dich an die Aableitung machst, würde ich das ganze noch ein wenig umformen, so umgehst du im Argument (der inneren Ableitung) nachher der Kombination aus Produkt und Kettenregel, sondern braucsht "nur noch" die Quotientenregel

Also:

[mm] f(x)=\arcsin\left((x+1)(x-1)^{-1}\right) [/mm]
[mm] =\arcsin\left(\bruch{x+1}{x-1}\right) [/mm]

Und jetzt mal ableiten:

[mm] f'(x)=\bruch{1}{\wurzel{1-\left(\bruch{x+1}{x-1}\right)^{2}}}*\bruch{1(x-1)-1(x+1)}{(x-1)²} [/mm]
[mm] =\bruch{1}{\wurzel{1-\left(\bruch{x+1}{x-1}\right)^{2}}}*\bruch{-2}{(x-1)²} [/mm]
[mm] =\bruch{-2}{(x-1)²*\wurzel{1-\left(\bruch{x+1}{x-1}\right)^{2}}} [/mm]
[mm] =\bruch{-2}{\wurzel{(x-1)^{4}*\left(1-\left(\bruch{(x+1)²}{(x-1)²}\right)^{2}\right)}} [/mm]
[mm] =\bruch{-2}{\wurzel{(x-1)^{4}-\bruch{(x+1)²(x-1)^{4}}{(x-1)²}}} [/mm]
[mm] =\bruch{-2}{\wurzel{(x-1)^{4}-(x+1)²(x-1)²}} [/mm]
[mm] =\bruch{-2}{\wurzel{((x-1)²)^{2}-((x+1)(x-1))²}} [/mm]
[mm] =\bruch{-2}{\wurzel{((x-1)²)^{2}-((x+1)(x-1))²}} [/mm]
[mm] =\bruch{-2}{\wurzel{[((x-1)²)-((x+1)(x-1))]*[((x-1)²)+((x+1)(x-1))]}} [/mm]
[mm] =\bruch{-2}{\wurzel{(x-1)²-(x+1)(x-1)]}*\wurzel{(x-1)²+(x+1)(x-1)}} [/mm]

Kommst du jetzt irgendwie weiter?

Marius


Bezug
                
Bezug
Ableitung + vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 Fr 05.12.2008
Autor: larifari

Wie kommt man von:

$ [mm] =\bruch{-2}{(x-1)²\cdot{}\wurzel{1-\left(\bruch{x+1}{x-1}\right)^{2}}} [/mm] $

zu diesen Schritt:

$ [mm] =\bruch{-2}{\wurzel{(x-1)^{4}\cdot{}\left(1-\left(\bruch{(x+1)²}{(x-1)²}\right)^{2}\right)}} [/mm] $

den Nenner einfach ins quadrat nehmen!?

Der Ansatz reicht mir, jetzt muss ich theoretisch noch weiter ausmultiplizieren und komme dann auf mein Ergebnis oder?

Bezug
                        
Bezug
Ableitung + vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 Fr 05.12.2008
Autor: M.Rex

Hallo

> Wie kommt man von:
>  
> [mm]=\bruch{-2}{(x-1)²\cdot{}\wurzel{1-\left(\bruch{x+1}{x-1}\right)^{2}}}[/mm]
>  
> zu diesen Schritt:
>  
> [mm]=\bruch{-2}{\wurzel{(x-1)^{4}\cdot{}\left(1-\left(\bruch{(x+1)²}{(x-1)²}\right)^{2}\right)}}[/mm]
>  
> den Nenner einfach ins quadrat nehmen!?

Yep, es gilt:  [mm] \wurzel{a²*b}=\wurzel{a²}*\wurzel{b}=a*\wurzel{b} [/mm]

>  
> Der Ansatz reicht mir, jetzt muss ich theoretisch noch
> weiter ausmultiplizieren und komme dann auf mein Ergebnis
> oder?

So sollte es sein, ja

Marius

Bezug
                                
Bezug
Ableitung + vereinfachen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:17 Fr 05.12.2008
Autor: larifari

Wunderbar, langsam kommt Licht ins Dunkle. Vielen Dank!

Bezug
                
Bezug
Ableitung + vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:23 Mo 08.12.2008
Autor: larifari

So irgendwie hänge ich doch nich in der Luft, nachdem ich gemerkt habe, dass irgendetwas falsch war.

Ich habe die Gleichung jetzt ausmultipliziert mit binomischen Formel usw. und komme auf:

[mm] \bruch{2}{\wurzel{-2+2}\*{\wurzel{x^{2}}-2x}} [/mm]

jetzt hab ich unzählige sachen versucht um auf mein ergebnis: [mm] (x-1)^{-1}\*(-x)^{\bruch{-1}{2}} [/mm] x<0

Bin schon bisschen am verzweifeln und hoffe, dass jemand helfen kann. Grüße

Bezug
                        
Bezug
Ableitung + vereinfachen: falsch zusammengefasst
Status: (Antwort) fertig Status 
Datum: 18:34 Mo 08.12.2008
Autor: Loddar

Hallo larifari!


Da hast Du wohl falsch ausmultipliziert und zusammengefasst...

Betrachten wir nur mal den Nenner aus der letzten Zeile von Marius' Antwort:

[mm] $$\wurzel{(x-1)²-(x+1)(x-1)}\cdot{}\wurzel{(x-1)²+(x+1)(x-1)}$$ [/mm]
$$= \ [mm] \wurzel{x^2-2x+1-x^2+1}\cdot{}\wurzel{x^2-2x+1+x^2-1}$$ [/mm]
$$= \ [mm] \wurzel{2-2x}\cdot{}\wurzel{2x^2-2x}$$ [/mm]
$$= \ [mm] \wurzel{2*(1-x)}\cdot{}\wurzel{2*x*(x-1)}$$ [/mm]
$$= \ [mm] \wurzel{2}*\wurzel{1-x}\cdot{}\wurzel{2}*\wurzel{x}*\wurzel{x-1}$$ [/mm]
$$= \ [mm] 2*\wurzel{-(x-1)\cdot{}x*(x-1)}$$ [/mm]
$$= \ [mm] 2*\wurzel{-x*(x-1)^2}$$ [/mm]
$$= \ [mm] 2*(x-1)*\wurzel{-x}$$ [/mm]

Gruß
Loddar


Bezug
                                
Bezug
Ableitung + vereinfachen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 Mo 08.12.2008
Autor: larifari

So jetzt hat sich endlich alles geklärt. Hat wieder an kleinen Kleinigkeiten gelegen. Danke euch!

Bezug
                
Bezug
Ableitung + vereinfachen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:07 Mo 08.12.2008
Autor: Astor

Meiner Rechnung nach ist bei der Ableitungsumformung von der 4 zur 5. Zeile ein Fehler. Wie kommt der Subtrahend 1 weg?
Astor

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]