matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Ableitung
Ableitung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Idee u. Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:24 So 25.11.2012
Autor: luna19

Aufgabe
Bilden Sie die Ableitung der Funktion f mit

a) [mm] f(x)=\bruch{1}{(x-1)^{2}} [/mm]

b) [mm] f(x)=\bruch{x+1}{e^{x}} [/mm]

c) [mm] f(a)=\wurzel{ax^{2}-3} [/mm]

Hallo :)

Ich bin mir nicht sicher,ob die Ableitungen richtig sind:

a) [mm] f(x)=\bruch{1}{(x-1)^{2}} [/mm]

   [mm] g(x)=\bruch{1}{x}=x^{-1} [/mm]

   [mm] h(x)=(x-1)^{2} [/mm]

  [mm] g'(x)=-1x^{\bruch{-1}{2}} [/mm]

  h'(x)=2(x-1)=2x-2

  f'(x)= g'( h(x))*h'(x)

        [mm] =1(x-1)^{2}*^{\bruch{-1}{2}}*(2x-2) [/mm]
          
        [mm] \bruch{2x-2}{(x-1)} [/mm]


b) [mm] f(x)=\bruch{x+1}{e^{x}} [/mm]

   [mm] g(x)=\bruch{x}{e^{x}} [/mm]

   h(x)=x+1

  [mm] g'(x)=-x*e^{-x} [/mm]

  h'(x)=1

[mm] f'(x)=-x*e^{-(x+1)}*1 [/mm]

         [mm] -x*e^{-x-1} [/mm]



c) [mm] f(a)=\wurzel{ax^{2}-3} [/mm]

   [mm] g(a)=\wurzel{a}=a^{\bruch{1}{2}} [/mm]

   [mm] h(a)=ax^{2}-3 [/mm]

   [mm] g'(x)=\bruch{1}{2}a^{-\bruch{1}{2}} [/mm]

   [mm] h'(x)=x^{2} [/mm]

   [mm] f'(a)=\bruch{1}{2}(ax^{2}-3)^{-\bruch{1}{2}}*x^{2} [/mm]

         [mm] =\bruch{0,5x^{2}}{\wurzel{(ax^{2}-3)}} [/mm]


Danke !!!
  

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 So 25.11.2012
Autor: mathmetzsch

Hallo,

leider haben sich hier ein paar Fehler eingeschlichen:

zu a) Du hast richtig erkannt, dass es sich um eine verkettete Funktion handelt. Die äußere Funktion ist aber nicht 1/x sondern g(x)=[mm]\bruch{1}{x^{2}}[/mm]. Die innere Funktion ist demnach h(x)=(x-1).  Leite es noch mal richtig. Zur Kontrolle: [mm]f'(x)=\bruch{-2}{(x-1)^{3}}[/mm].

Zu b) Hier erkennst du auch die Verkettung nich richtig. Im Prinzip ist hier nichts verkettet. Es ist einfach ein Quotient aus zwei Funktionen. Diesen kannst du mit der Quotientenregel ableiten. Zur Kontrolle: [mm]f'(x)=\bruch{-x}{e^{x}}[/mm].

Zu c) Das ist richtig!

Grüße, Daniel


Bezug
        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 So 25.11.2012
Autor: Richie1401

Moin moin,

> Bilden Sie die Ableitung der Funktion f mit
>
> a) [mm]f(x)=\bruch{1}{(x-1)^{2}}[/mm]
>  
> b) [mm]f(x)=\bruch{x+1}{e^{x}}[/mm]
>  
> c) [mm]f(a)=\wurzel{ax^{2}-3}[/mm]
>  Hallo :)
>  
> Ich bin mir nicht sicher,ob die Ableitungen richtig sind:
>  
> a) [mm]f(x)=\bruch{1}{(x-1)^{2}}[/mm]
>  
> [mm]g(x)=\bruch{1}{x}=x^{-1}[/mm]
>  
> [mm]h(x)=(x-1)^{2}[/mm]
>  
> [mm]g'(x)=-1x^{\bruch{-1}{2}}[/mm]
>  
> h'(x)=2(x-1)=2x-2
>  
> f'(x)= g'( h(x))*h'(x)
>  
> [mm]=1(x-1)^{2}*^{\bruch{-1}{2}}*(2x-2)[/mm]
>            
> [mm]\bruch{2x-2}{(x-1)}[/mm]

[notok]

Du könntest die Quotientenregel verwenden:
Ist [mm] f=\frac{u}{v}, [/mm] dann ist [mm] f'=\frac{u'v-uv'}{v^2}. (v\not=0) [/mm]

Oder du schreibst f(x) als [mm] f(x)=(x-1)^{-2} [/mm]
Deine innere Funktion ist dann h(x)=x-1 und die äußere Funktion [mm] g(z)=z^{-2} [/mm]
Dann ist f'=h'*g'

>  
>
> b) [mm]f(x)=\bruch{x+1}{e^{x}}[/mm]
>  
> [mm]g(x)=\bruch{x}{e^{x}}[/mm]
>  
> h(x)=x+1

Hier passt was nicht. g und h passen nicht zusammen.

>  
> [mm]g'(x)=-x*e^{-x}[/mm]
>  
> h'(x)=1
>  
> [mm]f'(x)=-x*e^{-(x+1)}*1[/mm]
>  
> [mm]-x*e^{-x-1}[/mm]

fast richtig.

>  
>
>
> c) [mm]f(a)=\wurzel{ax^{2}-3}[/mm]
>  
> [mm]g(a)=\wurzel{a}=a^{\bruch{1}{2}}[/mm]
>  
> [mm]h(a)=ax^{2}-3[/mm]
>  
> [mm]g'(x)=\bruch{1}{2}a^{-\bruch{1}{2}}[/mm]

Nicht g'(x), sondern g'(a), wobei a hier nicht die optimale Lösung ist, denn schließlich substituierst du den Radikanden. Besser wäre, wenn du [mm] z:=ax^{2}-3 [/mm] und so die Funktion [mm] g(z)=z^{1/2} [/mm] erhältst.

>  
> [mm]h'(x)=x^{2}[/mm]
>  
> [mm]f'(a)=\bruch{1}{2}(ax^{2}-3)^{-\bruch{1}{2}}*x^{2}[/mm]
>  
> [mm]=\bruch{0,5x^{2}}{\wurzel{(ax^{2}-3)}}[/mm]

Die Benennung deiner Funktionen ist einfach unglücklich gewählt. Du würfelst hier die Variablen hin und her. Das ist echt nicht gut.
Die innere Funktion wäre

Aber dennoch stimmt das Ergebnis!

Schau bei a) und b) noch einmal drüber!

>  
>
> Danke !!!
>      


Bezug
                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:05 Di 27.11.2012
Autor: luna19

Danke !!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]