matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Ableitung
Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 Mo 19.12.2011
Autor: Unk

Aufgabe
Seien $B,B'$ Banachräume, $u:U [mm] \to [/mm] B, v: V [mm] \to [/mm] B'$ differenzierbare Abbildungen und $A: B [mm] \times [/mm] B' [mm] \to \mathbb{R}$ [/mm] eine Bilinearform, die stetig und beschränkt ist. Dann gilt folgende Produktregel:

$A(u,v)'(x)=A(u'(x),v(x))+A(u(x),v'(x)).$

Meine Frage: Macht das so aufgeschrieben überhaupt Sinn?

Hallo,

es sind doch $u'(x):U [mm] \to [/mm] B$ bzw $v$ bzw. $V [mm] \to [/mm] B'$ lineare Abbildungen. Sowas kann ich doch aber garnicht in das Skalarprodukt reinstecken.
Mache ich einen Denkfehler, oder wie ist das zu interpretieren?
Sollte man dem Ganzen nicht vielleicht eher eine Richtung mitgeben für
b in B und b' in B' also etwa so:

$A(u,v)'(x)(b,b')=A(u'(x)b,v(x))+A(u(x),v'(x)b').$

Oder ist das dann falsch?

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Mo 19.12.2011
Autor: fred97


> Seien [mm]B,B'[/mm] Banachräume, [mm]u:U \to B, v: V \to B'[/mm]
> differenzierbare Abbildungen und [mm]A: B \times B' \to \mathbb{R}[/mm]
> eine Bilinearform, die stetig und beschränkt ist. Dann
> gilt folgende Produktregel:
>  
> [mm]A(u,v)'(x)=A(u'(x),v(x))+A(u(x),v'(x)).[/mm]
>  
> Meine Frage: Macht das so aufgeschrieben überhaupt Sinn?

Nein. u ist auf U definiert und v ist auf V def. dann ist u(x), v(x) sinnlos.

>  Hallo,
>  
> es sind doch [mm]u'(x):U \to B[/mm] bzw [mm]v[/mm] bzw. [mm]V \to B'[/mm] lineare
> Abbildungen. Sowas kann ich doch aber garnicht in das
> Skalarprodukt reinstecken.
> Mache ich einen Denkfehler, oder wie ist das zu
> interpretieren?
>  Sollte man dem Ganzen nicht vielleicht eher eine Richtung
> mitgeben für
>  b in B und b' in B' also etwa so:
>  
> [mm]A(u,v)'(x)(b,b')=A(u'(x)b,v(x))+A(u(x),v'(x)b').[/mm]
>  
> Oder ist das dann falsch?


Du kannst definieren

        $  [mm] \Phi:U \times [/mm] V [mm] \to \IR$ [/mm]

durch

         [mm] $\Phi(x,y):= [/mm] A(u(x),v(y))$

Nun kannst Du Dir überlegen, ob [mm] \Phi [/mm] differenzierbar ist und ob eine "Produktregel" gilt.

FRED



Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Mo 19.12.2011
Autor: Unk


> > Seien [mm]B,B'[/mm] Banachräume, [mm]u:U \to B, v: V \to B'[/mm]
> > differenzierbare Abbildungen und [mm]A: B \times B' \to \mathbb{R}[/mm]
> > eine Bilinearform, die stetig und beschränkt ist. Dann
> > gilt folgende Produktregel:
>  >  
> > [mm]A(u,v)'(x)=A(u'(x),v(x))+A(u(x),v'(x)).[/mm]
>  >  
> > Meine Frage: Macht das so aufgeschrieben überhaupt Sinn?
>  
> Nein. u ist auf U definiert und v ist auf V def. dann ist
> u(x), v(x) sinnlos.
>  

Ohja, es sollte natürlich U=V sein. Ist meine Frage dann richtig, bzw. wie wäre dann die Antwort darauf?

> >  Hallo,

>  >  
> > es sind doch [mm]u'(x):U \to B[/mm] bzw [mm]v[/mm] bzw. [mm]V \to B'[/mm] lineare
> > Abbildungen. Sowas kann ich doch aber garnicht in das
> > Skalarprodukt reinstecken.
> > Mache ich einen Denkfehler, oder wie ist das zu
> > interpretieren?
>  >  Sollte man dem Ganzen nicht vielleicht eher eine
> Richtung
> > mitgeben für
>  >  b in B und b' in B' also etwa so:
>  >  
> > [mm]A(u,v)'(x)(b,b')=A(u'(x)b,v(x))+A(u(x),v'(x)b').[/mm]
>  >  
> > Oder ist das dann falsch?
>
>
> Du kannst definieren
>  
> [mm]\Phi:U \times V \to \IR[/mm]
>  
> durch
>  
> [mm]\Phi(x,y):= A(u(x),v(y))[/mm]
>  
> Nun kannst Du Dir überlegen, ob [mm]\Phi[/mm] differenzierbar ist
> und ob eine "Produktregel" gilt.
>  
> FRED
>  
>  


Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Di 20.12.2011
Autor: rainerS

Hallo!

> > > Seien [mm]B,B'[/mm] Banachräume, [mm]u:U \to B, v: V \to B'[/mm]
> > > differenzierbare Abbildungen und [mm]A: B \times B' \to \mathbb{R}[/mm]
> > > eine Bilinearform, die stetig und beschränkt ist. Dann
> > > gilt folgende Produktregel:
>  >  >  
> > > [mm]A(u,v)'(x)=A(u'(x),v(x))+A(u(x),v'(x)).[/mm]
>  >  >  
> > > Meine Frage: Macht das so aufgeschrieben überhaupt Sinn?
>  >  
> > Nein. u ist auf U definiert und v ist auf V def. dann ist
> > u(x), v(x) sinnlos.
>  >  
> Ohja, es sollte natürlich U=V sein. Ist meine Frage dann
> richtig, bzw. wie wäre dann die Antwort darauf?
>  
> > >  Hallo,

>  >  >  
> > > es sind doch [mm]u'(x):U \to B[/mm] bzw [mm]v[/mm] bzw. [mm]V \to B'[/mm] lineare
> > > Abbildungen. Sowas kann ich doch aber garnicht in das
> > > Skalarprodukt reinstecken.
> > > Mache ich einen Denkfehler, oder wie ist das zu
> > > interpretieren?

Weder ist irgendwo gesagt, dass u und v lineare Abbildungen sind, noch ist die Rede von einem Skalarprodukt.

Mal davon abgesehen ist $A$ eine Abbildung von [mm] $B\times [/mm] B'$ nach [mm] $\IR$, [/mm] also kannst du beliebige Elemente von $B$ bzw. $B'$ reinstecken, also auch [mm] $u(x)\in [/mm] B$ und [mm] $v(x)\in [/mm] B'$ für beliebige [mm] $x\in [/mm] U$. $A(u(x),v(x))$ ist also wohldefiniert und als Funktion von x eine Abbildung von $U$ nach [mm] $\IR$. [/mm]

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]