matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Ableitung
Ableitung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Ableitung bilden
Status: (Frage) beantwortet Status 
Datum: 22:13 Mi 23.03.2011
Autor: Mausibaerle

Aufgabe
Bestätige die Integrationsregel!

[mm] \bruch{a^x}{ln a} [/mm]

Hallo Ihr Lieben,

zu später Stunde noch ein letztes Hilfegesuch für heute:

wie bilde ich denn zur obigen Aufgabe die Ableitung? Quotienregel funktioniert doch nicht, oder?!

Ich hätte es jetzt mal folgendermaßen probiert:

[mm] \bruch{ln a *ln a* a^x-a^x*x^-1}{(ln a)^2} [/mm]

und rauskommen sollte eignetlich ja nur [mm] a^x [/mm]

Danke für eure Hilfe!!!

        
Bezug
Ableitung: Hinweise
Status: (Antwort) fertig Status 
Datum: 22:17 Mi 23.03.2011
Autor: Loddar

Hallo Mausibärle!


Zunächst einmal sehe ich hier keine Regel, sondern nur einen Term.

Sollst Du folgendes zeigen:
[mm] $\integral{\bruch{a^x}{\ln(a)} \ dx} [/mm] \ = \ [mm] a^x [/mm] +c$ ?


Dann musst Du hier selbstverständlich integrieren und nicht ableiten.

Bedenke, dass gilt: [mm] $a^x [/mm] \ = \ [mm] \left[ \ e^{\ln(a)} \ \right]^x [/mm] \ = ß [mm] e^{x*\ln(a)}$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:29 Mi 23.03.2011
Autor: Mausibaerle

Aufgabe
[mm] \integral{a^x dx}=\bruch{a^x}{ln a} [/mm] + C

[mm] \bruch{a^x}{ln a} [/mm] ist ja dann Stammfunktion zu [mm] a^x [/mm] und müsste beim Ableiten ja auch wieder rauskommen.

Hab die Frage ein wenig missverständlich formuliert, sry!

Deswegen hab ich versucht die Quotientenregel auf die Stammfunktion anzuwenden um sie abzuleiten, was ja nicht so ganz funktioniert hat.

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 Mi 23.03.2011
Autor: Gonozal_IX

Huhu,

>  [mm]\bruch{a^x}{ln a}[/mm] ist ja dann Stammfunktion zu [mm]a^x[/mm] und
> müsste beim Ableiten ja auch wieder rauskommen.

Ja, [mm] a^x [/mm] müsste rauskommen, korrekt.

> Deswegen hab ich versucht die Quotientenregel auf die
> Stammfunktion anzuwenden um sie abzuleiten, was ja nicht so
> ganz funktioniert hat.  

Naja, es würde schon funktionieren, wenn du es korrekt gemacht hättest.

Du sollst doch nach x (!!) ableiten, was ist denn dann [mm] \bruch{1}{\ln(a)} [/mm] ?

Und [mm] a^x [/mm] kannst du NICHT ableiten wie [mm] $x^n$, [/mm] sondern über die Kettenregel und unter Verwendung von (wie Loddar schon sagte) [mm] $a^x [/mm] = [mm] e^{x*\ln(a)}$ [/mm]

Was ist denn nun also [mm] $\left(a^x\right)'$, [/mm] wenn du obige Identität nutzt?

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]