matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Ableitung
Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:26 Do 17.03.2011
Autor: mathefreak89

Aufgabe
[mm] g(x)=\wurzel{x^2+cos^2(x)} [/mm]



Die obige Funktion soll abgeleitet werden
Kann ich die auch so schreiben?
[mm] g(x)=\wurzel{x^2+cos(x^2)} [/mm]

und ist die zugehörige ableitung dazu:

g´(x)= [mm] \bruch{1}{2*\wurzel{x^2+cos(x²)}} [/mm] * [mm] (2x-2x*sin(x^2)) [/mm]

Danke im Voraus

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Do 17.03.2011
Autor: fred97


> [mm]g(x)=\wurzel{x^2+cos^2(x)}[/mm]
>  
>
> Die obige Funktion soll abgeleitet werden
>  Kann ich die auch so schreiben?
>  [mm]g(x)=\wurzel{x^2+cos(x^2)}[/mm]

Nein. Um Gottes Willen, es ist doch i.a. [mm] cos^2(x)\ne cos(x^2) [/mm]

Ausfühlich: [mm] cos^2(x)=(cos(x))^2 [/mm]

Also , nochmal ran an die Aufgabe.

FRED

>  
> und ist die zugehörige ableitung dazu:
>  
> g´(x)= [mm]\bruch{1}{2*\wurzel{x^2+cos(x²)}}[/mm] *
> [mm](2x-2x*sin(x^2))[/mm]
>  
> Danke im Voraus


Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 Do 17.03.2011
Autor: mathefreak89

Also haben wa dann:
[mm] g(x)=\wurzel{x^2+{cos(x)}^2} [/mm]

[mm] g´(x)=\bruch{1}{2*\wurzel{x^2+{cos(x)}^2}}*[2x+(2cos(x)*-sin(x))] [/mm] ???

Und welche x sind dann dafür sinnvoll?



Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Do 17.03.2011
Autor: Steffi21

Hallo, deine Ableitung ist bis auf Klammern ok

.......*[2x+2cos(x)*(-sin(x))]

die 2. Frage bitte näher kommentieren, sind eventuell Extremstellen gesucht?

Steffi



Bezug
                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:43 Do 17.03.2011
Autor: mathefreak89

JA mit den Klammern hab ich auch selbst noch gesehen und verbessert warst nur zu schnell ;)

Ich weiß auch nich genau was damit gemeint ist ..
Hier mal die genaue Aufgabenstellung:

Bestimmen sie g´(x) und geben sie an, welche x dabei sinnvoll sind.

Bezug
                                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Do 17.03.2011
Autor: Al-Chwarizmi


> JA mit den Klammern hab ich auch selbst noch gesehen und
> verbessert warst nur zu schnell ;)
>  
> Ich weiß auch nich genau was damit gemeint ist ..
>  Hier mal die genaue Aufgabenstellung:
>  
> Bestimmen sie g´(x) und geben sie an, welche x dabei
> sinnvoll sind.

1.) deine Formel für die Ableitung kann man noch
    vereinfachen

2.) die Frage ist, für welche Werte von x diese
    Ableitung definiert ist.
    Allenfalls problematisch könnte dabei nur das
    Wurzelziehen und/oder die Division werden ...

LG

Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]