matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Ableitung
Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:21 So 11.07.2010
Autor: safsaf

Aufgabe
[mm] u(t)=\bruch{1}{5}cos(t)+\bruch{2}{5}sin(t)+(exp(-t).sin(t)) [/mm]

erste Ableitung lautet : [mm] \bruch{-1}{5}sin(t)+\bruch{2}{5}cos(t)-(exp(-t).(cos(t)+sin(t))) [/mm]

ist es richtig?

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:27 So 11.07.2010
Autor: schachuzipus

Hallo safsaf,

>
> [mm]u(t)=\bruch{1}{5}cos(t)+\bruch{2}{5}sin(t)+(exp(-t).sin(t))[/mm]

Den Multiplikationspunkt kannst du mit * oder \cdot{} machen, aber das hat dir - glaube ich - bereits jemand gesagt.

Mache das bitte in Zukunft!

>  erste Ableitung lautet :
> [mm]\bruch{-1}{5}sin(t)+\bruch{2}{5}cos(t)-(exp(-t).(cos(t)+sin(t)))[/mm]
>  
> ist es richtig?

Fast, ein kleiner Vorzeichenfehler hat sich eingeschlichen...

Am Ende muss es [mm] $-\exp(-t)\cdot{}\left[\sin(t)\red{-}\cos(t)\right]$ [/mm] lauten ...

Gruß

schachuzipus


Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 So 11.07.2010
Autor: safsaf

Aufgabe
ok danke nochmal. ich hab's nochmal berechnet.
$ [mm] u(t)=\bruch{1}{5}cos(t)+\bruch{2}{5}sin(t)+(exp(-t)\cdot{sin(t)}) [/mm] $
u'(t)=$ [mm] \bruch{-1}{5}sin(t)+\bruch{2}{5}cos(t)-(exp(-t).(-cos(t)+sin(t))) [/mm] $  

nun [mm] u''(t)=\bruch{-1}{5}cos(t)-\bruch{2}{5}sin(t)-2exp(-t)\cdot{cos(t)} [/mm]
ist es richtig?

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 So 11.07.2010
Autor: MathePower

Hallo safsaf,

> ok danke nochmal. ich hab's nochmal berechnet.
>  
> [mm]u(t)=\bruch{1}{5}cos(t)+\bruch{2}{5}sin(t)+(exp(-t)\cdot{sin(t)})[/mm]
>  u'(t)=[mm] \bruch{-1}{5}sin(t)+\bruch{2}{5}cos(t)-(exp(-t).(-cos(t)+sin(t)))[/mm]
> nun
> [mm]u''(t)=\bruch{-1}{5}cos(t)-\bruch{2}{5}sin(t)-2exp(-t)\cdot{cos(t)}[/mm]
>  ist es richtig?


Ja. [ok]


Gruss
MathePower

Bezug
                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:09 So 11.07.2010
Autor: safsaf

Aufgabe
vielen dank aber noch eine frage dazu bitte. ich denke die Frage ist schon falsch gestellt,sie lautet:zeigen sie daß die Funktion den Anfangswerten [mm] u(0)=\bruch{1}{5} [/mm] une [mm] u'(0)=\bruch{7}{5} [/mm] genügt

für u(0) stimmt das ok aber für [mm] u'(0)=\bruch{4}{5} [/mm]
ist die frage falsch oder eher meine antwort ?

Bezug
                                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 So 11.07.2010
Autor: MathePower

Hallo safsaf,

> vielen dank aber noch eine frage dazu bitte. ich denke die
> Frage ist schon falsch gestellt,sie lautet:zeigen sie daß
> die Funktion den Anfangswerten [mm]u(0)=\bruch{1}{5}[/mm] une
> [mm]u'(0)=\bruch{7}{5}[/mm] genügt
>  für u(0) stimmt das ok aber für [mm]u'(0)=\bruch{4}{5}[/mm]
>   ist die frage falsch oder eher meine antwort ?


Deine Antwort.


Gruss
MathePower

Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 So 11.07.2010
Autor: safsaf

Aufgabe
man kommt auf [mm] \bruch{2}{5}+\bruch{2}{5} [/mm] da sin(0)=0

und exp(0)=1

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 So 11.07.2010
Autor: MathePower

Hallo safsaf,

> man kommt auf [mm]\bruch{2}{5}+\bruch{2}{5}[/mm] da sin(0)=0
>  und exp(0)=1


Das erste [mm]\bruch{2}{5}[/mm] kann ich mir erklären.

Aber wie Du auf das zweite [mm]\bruch{2}{5}[/mm] kommst,
ist mir schleierhaft.


Gruss
MathePower

Bezug
                                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 So 11.07.2010
Autor: safsaf

Aufgabe
ich schäme mich für diese Fehler :) hab ein Teil von u' mit einem von u'' verwechselt

natürlich [mm] \bruch{2}{5}+1=\bruch{7}{5} [/mm]
danke :)
lg saf

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]