matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Ableitung
Ableitung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:30 Di 17.03.2009
Autor: C.B.

Aufgabe
Gegeben ist die Funktion f mit Graph K durch f(x)= [mm] \bruch{(e*ln(x)²)}{x}. [/mm]
Untersuchen sie die Funktion auf Extrem- und Wendepunkte.
Geben Sie die Asymptote von K an.

Ich kriege die Ableitung nicht vernünftig hin!

Mein Ergebnis: [mm] \bruch{2xe²ln(x)-(ln(x))²}{x²} [/mm]

Bei der Extremstellenberechnung lande ich dann bei 2x=ln(x), was nun nicht sein kann..

Außerdem habe ich keine Idee, wie ich die Asymptote in diesem Fall berechnen soll..

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Di 17.03.2009
Autor: fred97


> Gegeben ist die Funktion f mit Graph K durch f(x)=
> [mm]\bruch{(e*ln(x)²)}{x}.[/mm]
> Untersuchen sie die Funktion auf Extrem- und Wendepunkte.
>  Geben Sie die Asymptote von K an.
>  Ich kriege die Ableitung nicht vernünftig hin!
>  
> Mein Ergebnis: [mm]\bruch{2xe²ln(x)-(ln(x))²}{x²}[/mm]

Das ist nicht richtig. Zeig doch mal Deine Rechnungen, Quotientenregel !!


FRED



>  
> Bei der Extremstellenberechnung lande ich dann bei
> 2x=ln(x), was nun nicht sein kann..
>  
> Außerdem habe ich keine Idee, wie ich die Asymptote in
> diesem Fall berechnen soll..


Bezug
                
Bezug
Ableitung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:18 Do 19.03.2009
Autor: C.B.

Also ich habe das wie folgt aufgeteilt:

u = (eln(x))² [mm] u'=\bruch{2e²ln(x)}{x} [/mm]
v= x   v'=1

Daraus ist dann meine Ableitung
f'(x) = [mm] \bruch{2xe²ln(x)-(eln(x))²}{x²} [/mm] entstanden.

Wo liegt der Fehler?

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Do 19.03.2009
Autor: XPatrickX

Hallo,

lautet die Funktion nun:

[mm] $$f(x)=\bruch{e\cdot{}ln(x)²}{x}$$ [/mm]

oder

[mm] $$f(x)=\bruch{\red{(}e\cdot{}ln(x)\red{)^2}}{x}$$ [/mm]


Außerdem hast du nun ein anderes Ergebnis angegeben als zu Beginn. Gewöhne dir bitte an sauber und ordentlich zu arbeiten, dann fällt uns das Korrigieren auch leichter.

Gruß Patrick


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]