matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Ableitung
Ableitung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 So 08.02.2009
Autor: starkurd

Hallo alle zusammen,

ich habe folgende Fkt,die ich zunächst bis hier hin vereinfacht- dann möchte ich die Ableitung bilden,bleibe aber hier hängen!
[mm] f(x)=\pi/4*x^2*(h- [/mm] h/(d/2)*x/2 klammer aufgelöst
[mm] f(x)=\pi/4*hx^2-\pi/4*h*(d/2)*x^2*x/2 [/mm] vereinfacht
[mm] f(x)=\pi*h/4*x^2-\pi*h*2/4d*x^2*x/2 [/mm]
so hier komme ich nicht weiter!
habe nachgeschaut,finde auch keinen fehler bei klammer auflösen oder vereinfachen.....

vielend dank im voraus für euren einsatz

        
Bezug
Ableitung: zusammenfassen !
Status: (Antwort) fertig Status 
Datum: 16:11 So 08.02.2009
Autor: Al-Chwarizmi

Hallo Ferhan,

> Hallo alle zusammen,
>  
> ich habe folgende Fkt,die ich zunächst bis hier hin
> vereinfacht- dann möchte ich die Ableitung bilden,bleibe
> aber hier hängen!

>  [mm]f(x)=\pi/4*x^2*(h-[/mm] h/(d/2)*x/2      klammer aufgelöst

hier fehlt aber doch eine Endklammer !  wo genau ?

>  [mm]f(x)=\pi/4*hx^2-\pi/4*h*(d/2)*x^2*x/2[/mm]      vereinfacht

>  [mm]f(x)=\pi*h/4*x^2-\pi*h*2/4d*x^2*x/2[/mm]

>  so hier komme ich nicht weiter!
>  habe nachgeschaut,finde auch keinen fehler bei klammer
> auflösen oder vereinfachen.....

Gut - ich habe das also nicht nachgerechnet.

Deine letzte Gleichung hat doch jetzt die Form

      [mm] f(x)=A*x^2-B*x^3 [/mm]

Fasse doch zuerst mal noch die Zahlenfaktoren
und die Potenzen zusammen! Ich kann mir nicht
vorstellen, wo da beim Ableiten ein Problem sein sollte ...


LG

Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 So 08.02.2009
Autor: starkurd

Hallo,

bin jetzt auf folgende Fkt gekommen und habe diese abgeleitet.
[mm] f(x)=\pi*h/4*x^2-\pi*h*2/8d*x^3 [/mm]
[mm] f'(x)=2*\pi*h/4*x-3*\pi*h*2/8d [/mm]

wie mache ich jetzt weiter?es gibt doch jetzt keine gemeinsamen nenner!

gruß
starkurd

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 So 08.02.2009
Autor: Steffi21

Hallo,

im zweiten Summanden fehlt der Faktor [mm] x^{2} [/mm] jetzt kann ich leider nur Vermutungen anstellen, da die Aufgabenstellung fehlt, sicherlich ist die 1. Ableitung gleich Null zu setzen, klammere dafür x aus,

Steffi

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 So 08.02.2009
Autor: Al-Chwarizmi


> bin jetzt auf folgende Fkt gekommen und habe diese
> abgeleitet.
>  [mm]f(x)=\pi*h/4*x^2-\pi*h*2/8d*x^3[/mm]
>  [mm]f'(x)=2*\pi*h/4*x-3*\pi*h*2/8d[/mm]
>  
> wie mache ich jetzt weiter?es gibt doch jetzt keine
> gemeinsamen nenner!


hallo starkurd,

Steffi hat dir schon geantwortet.
Fasse aber doch einmal die Zahlenfaktoren wirklich
noch zusammen:

      $\ [mm] 2*\bruch{1}{4}\ [/mm] =\ ???$

      $\ [mm] 3*\bruch{2}{8}\ [/mm] =\ ???$

Ausserdem ist nicht recht klar, ob du mit dem Term

      $\ 2/8d$  

nun eigentlich   [mm] \bruch{2}{8d} [/mm]  oder  [mm] \bruch{2}{8}*d [/mm]  meinst !
Wenn du den Formeleditor benützt oder wenigstens
Klammern benützt, kannst (und solltest) du da
Klarheit schaffen.


Al-Chw.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]