matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Ableitung
Ableitung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:10 Mo 08.12.2008
Autor: yuppi

Aufgabe
f(x)= 2x * [mm] e^x [/mm]

f`(x)= [mm] 2*e^x+2+x*e^x [/mm]
       = [mm] e^x(2+2x) [/mm]

Im Heft steht diese Ableitung [mm] f´(x)=2e^x(x+1) [/mm]


Hallo zusammen

Welche ist die richtige ?

Die erste oder zweite ?

Erklärungen wären nett

        
Bezug
Ableitung: zweite
Status: (Antwort) fertig Status 
Datum: 13:15 Mo 08.12.2008
Autor: crashby


> f(x)= 2x * [mm]e^x[/mm]
>  
> f'(x)= [mm]2*e^x+2+x*e^x[/mm]
>         = [mm]e^x(2+2x)[/mm]
> Im Heft steht diese Ableitung [mm]f´(x)=2e^x(x+1)[/mm]

beide sind richtig.

du nimsmt hier die Produktregel:

$ [mm] f'(x)=u'\cdot v+u\cdot [/mm] v' $
$ [mm] f'(x)=2\cdot e^{x}+2x\cdot e^x [/mm] $

nun kannste $ [mm] e^x [/mm] $ ausklammern:

$ [mm] f'(x)=e^x(2+2x)$ [/mm]

und wenn dir das noch nicht reicht kannst auch noch die 2 ausklammern :)


$ [mm] f'(x)=2e^x(1+x) [/mm] $

okay ?

greetz




Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:22 Mo 08.12.2008
Autor: yuppi

danke für die flotte antwort aber wie du die 2 ausgeklammert hast ,weiß ich nicht wie....


[mm] f`(x)=e^x (x-1)-e^x*1/(x-1)^2 [/mm]

[mm] =e^x(x-1)-1/(x-1)^2 [/mm]      Hier weiß ich nicht weshalb man die -1 nicht mal die Klammer nimmt..kannst du mir das erklären..weil soweit ich weit steht hinter der klammer (x-1) *-1 ein mal oder

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Mo 08.12.2008
Autor: angela.h.b.


> danke für die flotte antwort aber wie du die 2
> ausgeklammert hast ,weiß ich nicht wie...

Hallo,

da stand: [mm] f'(x)=e^x(2+2x). [/mm]

Das ist [mm] =e^x(2*1+2*x)=e^x*2(1+x)=2e^x(1+x). [/mm]


>  
>
> [mm]f'(x)=e^x (x-1)-e^x*1/(x-1)^2[/mm]

Was ist das jetzt? Eine neue Aufgabe?
Die erste Ableitung kann man natürlich nur kontrollieren, wenn man die Funktion f kennt.

>  
> [mm]=e^x(x-1)-1/(x-1)^2[/mm]      Hier weiß ich nicht weshalb man
> die -1 nicht mal die Klammer nimmt..kannst du mir das
> erklären..weil soweit ich weit steht hinter der klammer
> (x-1) *-1 ein mal oder  .

Nein. So ist das zu lesen:

[mm] \red{e^x(x-1)} [/mm] - [mm] \blue{\bruch{1}{(x-1)^2}}. [/mm]

Gruß v. Angela



Bezug
                
Bezug
Ableitung: Stimmt das?
Status: (Frage) beantwortet Status 
Datum: 13:25 Mo 08.12.2008
Autor: Dinker

$ [mm] 2\cdot{}e^x+2+x\cdot{}e^x [/mm] $

$ [mm] e^x(2+2x) [/mm] $

Stimmt diese Unwandlung?

Bezug
                        
Bezug
Ableitung: Tippfehler
Status: (Antwort) fertig Status 
Datum: 13:36 Mo 08.12.2008
Autor: Loddar

Hallo Dinker!


Diese Umformung wie sie hier steht, ist natürlich nicht richtig.

Aber es muss auch in der 1. Zeile heißen:
$$f'(x) \ = \ [mm] 2*e^x+2 [/mm] \ [mm] \red{*} [/mm] \ [mm] x*e^x$$ [/mm]

Damit stimmt es in der nächsten Zeile auch wieder ...


Gruß
Loddar


Bezug
                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:40 Mo 08.12.2008
Autor: yuppi

jetzt bin ich ganz durcheinander ,,,

was meintest du loddar ?

Bezug
                                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Mo 08.12.2008
Autor: angela.h.b.


> jetzt bin ich ganz durcheinander ,,,
>  
> was meintest du loddar ?

hallo,

er meint, daß   f`(x)= [mm] 2\cdot{}e^x+2*x\cdot{}e^x [/mm]  richtig ist und nicht  f`(x)= $ [mm] 2\cdot{}e^x+2+x\cdot{}e^x [/mm] $, wie eingangs versehentlich geschrieben.

Gruß v. Angela


Bezug
                                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:46 Mo 08.12.2008
Autor: yuppi

angela du hast jetzt die 2mal die gleiche ableitung geschrieben.die sind doch identisch

Bezug
                                                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:50 Mo 08.12.2008
Autor: angela.h.b.


> angela du hast jetzt die 2mal die gleiche ableitung
> geschrieben.die sind doch identisch

hallo,

nein, sind sie nicht. Schau genau.

(Es ist nichts zum Grübeln, sondern es war ein schnöder Tippfehler.)

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]