matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Ableitung
Ableitung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Wo ist der Fehler
Status: (Frage) beantwortet Status 
Datum: 18:08 So 20.01.2008
Autor: ichonline

Hi,

ich versuche gerade folgende Funktion abzuleiten.

f(t) = G / (1+a*e^(-kGt)        

Also mussich ja nach t ableiten und die anderen Variablen wie normale Zahlen behandeln.

Ich bekomme dann: f'(t) = (0 - G*(a*e^(-kGt) * (-kG)) / (1+a*e^(-kGt)²

hm das Probelm ist nur, das die richtige Ableitung so aussehen muss.

f'(t) =K*f(t)*(G-f(t))

ALso meine Ableitung kann ich nciht auf diese Form bringen.

Vielleicht hat jemand einen Tipp, das wäre echt super!

Grüße ichonline


        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 So 20.01.2008
Autor: Tyskie84

Hi!

Also: f(t)= [mm] \bruch{G}{1+ae^{-kGt}} [/mm] leiten wir nach der Quotientenregel ab. Es ist [mm] f´(t)=\bruch{u(t)*v'(t)-u'(t)*v(t)}{(v(t))²} [/mm]

Also ist:
u(t)=G
u´(t)=0
[mm] v(t)=1+ae^{-kGt} [/mm]
[mm] v'(t)=-akGe^{-kGt} [/mm]

Also haben wir insgesamt: [mm] f'(t)=\bruch{akG²e^{-kGt}}{(1+ae^{-kGt})²} [/mm]
So nun vergleichen wir das mal mit deiner gegebnen Ableitung:
f'(t)=k*f(t)*(G-f(t)) das liefert doch: [mm] (\bruch{Gk}{1+ae^{-kGt}})*(\bruch{Gae^{-kGt}}{1+ae^{-kGt}}) [/mm] = [mm] \bruch{kG²ae^{-kGt}}{(1+ae^{-kGt})²} [/mm] Ok?

[cap] Gruß

Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 So 20.01.2008
Autor: ichonline

OKay cool, soweit ist alles klar.

Aber ein kleines Problem habe ich noch.
Aus der ersten Klammer ergibt sich k*f(t) wie muss ich aber die zweite umformen damit G-f(t) rauskommt.
Irgendwie muss man da was dazufügen oder so? weil irgendwoher muss ja das minus kommen.

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 So 20.01.2008
Autor: Tyskie84

Hallo
> wie muss ich aber
> die zweite umformen damit G-f(t) rauskommt.
>  Irgendwie muss man da was dazufügen oder so? weil
> irgendwoher muss ja das minus kommen.

Du hast G-f(t) also [mm] G-\bruch{G}{1+ae^{-kGt}} [/mm] Und jetzt gleichnamig machen

[cap] Gruß


Bezug
                                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:02 So 20.01.2008
Autor: ichonline

Ja also so rum wars mri kalr, nur nicht wennman es rückgängig machen will.
Aber das ist glaub auch agr nciht so wichtig, hab mir die ufgabe nochmal durch gelesen.
Also schönen Abend und Danke nochmals!

Grüße ichonline


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]