matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Ableitung
Ableitung < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:43 Sa 01.12.2007
Autor: kris1989

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Es wäre sehr nett wenn Ihr mir helfen könntet dei 2. Ableitung dieser Funktion zu berechnen.
f(x) = [mm] (8x+16)/x^2 [/mm]
für f'(x) hab ich bereits berechnet ^8/x2 - (8x+16)/2 [mm] x^3 [/mm]

        
Bezug
Ableitung: Korrektur
Status: (Antwort) fertig Status 
Datum: 17:47 Sa 01.12.2007
Autor: Loddar

Hallo Kris!


Deine 1. Ableitung ist leider falsch. Zerlege vor dem Ableiten die Funktion wie folgt:
$$f(x) \ = \ [mm] \bruch{8x+16}{x^2} [/mm] \ = \ [mm] \bruch{8x}{x^2}+\bruch{16}{x^2} [/mm] \ = \ [mm] \bruch{8}{x}+\bruch{16}{x^2} [/mm] \ = \ [mm] 8*x^{-1}+16*x^{-2}$$ [/mm]
Nun mittels MBPotenzregel zweimal ableiten.


Gruß
Loddar


Bezug
                
Bezug
Ableitung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:55 Sa 01.12.2007
Autor: kris1989

Ehrlich gesagt verstehe ich deinen Lösungsweg nicht so richtig.
Meiner Meinung nach muss man diese Funktion mithilfe der Quotientenregel ableiten

dh. f'(x)= 8 * x^-2 - (8x+16)*2x^-3

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Sa 01.12.2007
Autor: Teufel

Hallo!

Loddar hat deine Funktion nur umgeformt und sie dann mit der Potenzregel abgeleitet.

Natürlich kannst du auch mit der Quotientenregel arbeiten, aber das dauert etwas länger.

Er hat deinen Bruch nur aufgespalten, beim 1. ein x gekürzt und dann die beiden brüche als Potenzen geschrieben.

Bezug
                        
Bezug
Ableitung: mit Quotientenrgel
Status: (Antwort) fertig Status 
Datum: 17:58 Sa 01.12.2007
Autor: Loddar

Hallo Kris!


Mein Weg umgeht die MBQuotientenregel. Aber es geht auch mit ihr ... Dann musst Du sie aber auch richtig anwenden:

$$f'(x) \ = \ [mm] \bruch{8*x^2-(8x-16)*2x}{x^4} [/mm] \ = \ ...$$

Aah, ich sehe, anschließend hast Du dann genau dieselbe Umformung durchgeführt wie ich.


Gruß
Loddar


Bezug
                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 Sa 01.12.2007
Autor: kris1989

Ist da meine Anfangs genannte 1.Ableitung doch richtig und wie funktioniert das ableiten mit zur 2 Ableitung?

Danke für eure hilfe

Bezug
                                        
Bezug
Ableitung: entweder oder
Status: (Antwort) fertig Status 
Datum: 18:27 Sa 01.12.2007
Autor: Loddar

Hallo Kris!


Wenn Du nun Deine Form verwenden willst zum weiteren Ableiten musst Du die MBPotenzregel verwenden.

Oder halt nochmals die MBQuotientenregel für $f'(x) \ = \ [mm] -\bruch{8x+32}{x^3}$ [/mm] .


Gruß
Loddar


Bezug
                                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 Sa 01.12.2007
Autor: kris1989

Entschuldigung ich steh auf der Leitung wenn ich die Funktion, so wie du sie zerlegt hast das  erste mal mit der Potenzregel ableite
kommt doch raus f'(x) = -8^-2 + 32x^-3, aber wie kommt man da jetzt auf die  [mm] -(8x+32)/x^3 [/mm] .

Bezug
                                                        
Bezug
Ableitung: Korrektur
Status: (Antwort) fertig Status 
Datum: 22:22 Sa 01.12.2007
Autor: Loddar

Hallo Kris!


> kommt doch raus f'(x) = -8^-2 + 32x^-3,

[notok]  $f'(x) \ = \ [mm] -8*\red{x}^2 [/mm] \ [mm] \red{-} [/mm] \ [mm] 32*x^{-3}$ [/mm] .


> aber wie kommt man da jetzt auf die  [mm]-(8x+32)/x^3[/mm]

Bringe beide Terme durch Erweitern auf einen Hauptnenner [mm] $x^3$ [/mm] und fasse zusammen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]