matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Ableitung
Ableitung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Di 05.06.2007
Autor: Hello-Kitty

Aufgabe
Warum ist die Ableitung
f´(x)=ln 2+ [mm] 2^x [/mm]
wenn du ausgangsfunktion
[mm] f(x)=2^x [/mm] ist?
und warum ist F(x)= 1/ln2* [mm] 2^x [/mm]

Hallo
Ich verstehe einfach nicht, wie man auf diese Ergebnisse kommt...gibt es nicht irgendwie eine Regel wie man das berechnet? Natürlich kenne ich die Kettenregel, aber ich verstehe das einfach nicht...

bitte helft mir.

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Di 05.06.2007
Autor: Karl_Pech

Hallo Hello-Kitty,


> Warum ist die Ableitung
>  f´(x)=[mm]\ln(2)2^x[/mm]
>  wenn du ausgangsfunktion
>  [mm]f(x)=2^x[/mm] ist?
>  und warum ist F(x)= 1/ln2* [mm]2^x[/mm]


Hier nutzt man die e-Funktion und deren Umkehrfunktion, den natürlichen Logarithmus, aus:


[mm]\ln\left(2^x\right) = x\ln(2)[/mm] und [mm]e^{x\ln(2)}=e^{\ln\left(2^x\right)} = 2^x.[/mm]


Da du die Kettenregel kennst, kannst du sie ja hier mal auf [mm]f(x) := e^{x\ln(2)}[/mm] anwenden, indem du [mm]f'(x)[/mm] berechnest (Tipp: Die innere Funktion ist [mm]u(x) := \ln(2)x[/mm] und die äußere Funktion [mm]g(u) := e^u[/mm]). Berechne anschließend die Ableitung von [mm]F(x)[/mm] um zu erkennen, wozu man diesen Faktor [mm]\tfrac{1}{\ln(2)}[/mm] vor dem eigentlichen Funktionsterm benötigt.



Grüße
Karl




Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 Di 05.06.2007
Autor: Hello-Kitty

ok, vielen Dank, das habe ich endlich verstanden!

Allerdings, was mach ich denn wenn ich nun f(x)=2^(x+2)Ab-bzw.Aufleiten muss? da verzweifle ich schon wieder....


Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Di 05.06.2007
Autor: leduart

Hallo
> ok, vielen Dank, das habe ich endlich verstanden!
>  
> Allerdings, was mach ich denn wenn ich nun
> f(x)=2^(x+2)Ab-bzw.Aufleiten muss? da verzweifle ich schon
> wieder....

[mm] 2^{x+2}=2^x*2^2=4*2^x [/mm] und das kannst du!

geht aber auch anders! immer wenn du [mm] a^{f(x)} [/mm] ableiten musst, schreib einfach [mm] a=e^{lna}, [/mm] dann hast du :
  
[mm] $a^{f(x)} =e^{f(x)*lna}$ [/mm]  abgeleitet mit Kettenregel:

[mm] $(e^{f(x)*lna})'=e^{f(x)*lna} [/mm] *f'(x)*lna$

das geht auch wenn f(x)=x+2 ist, schneller ist in dem Fall siehe oben!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]