matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Ableitung
Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Do 08.02.2007
Autor: fidelio

Aufgabe
ableitung der unten stehenden funktion

hallo und schönen abend,

ich habe eine frage um etwas besser verstehen zu können:

1.) ableitung der funktion

f(x) [mm] y=\bruch{sinx}{2\*cosx} [/mm]


meine erste ableitung hat das ergebnis:

f´(x) [mm] y=\bruch{cosx\*2cosx-2\*(-sinx)\*sinx}{(2\*cosx)^2} [/mm]

lt. ergebnis im buch stimmt mein nenner, mein zähler soll jedoch 1 sein!?!?

wenn ich den zähler ausrechne sollte das dann 1 ergeben?? da hänge ich leider und komme nicht weiter wie das gehen soll!?

bitte um eure geschätzte hilfe dazu

gruß
fidelio

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Do 08.02.2007
Autor: Herby

Hallo Stephan,


denke doch dran, dass [mm] cos^2(x)+sin^2(x)=1 [/mm] ist :-)

hilft das ein bisschen?


Liebe Grüße
Herby

Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:12 Do 08.02.2007
Autor: fidelio

hallo herby,

leider hilft mir das zwar bedingt weiter aber wenn ich jetzt alles ausrechne ergibt das für mich:

[mm] \bruch{2}{(2\*cos(x))^{2}} [/mm]

damit bin ich weider weit entfernt von der lösung "1"

bitte um weitere hilfe danke und gruß

stephan

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Do 08.02.2007
Autor: Herby

Hi,

warum, im Nenner steht doch [mm] (2*cos(x))^2 [/mm] und das ist [mm] 2^2*cos^2(x)=2*2*cos^2(x) [/mm]

nun kannst du eine 2 kürzen und erhältst im Zähler deine gewünschte 1.


klarer?



lg
Herby

Bezug
                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 Do 08.02.2007
Autor: fidelio

hallo herbi,

da bin ich wieder......ich habe ein brett vor dem kopf - ich sehs einfach nicht...... ich schreibe jetzt meinen ganzen rechenvorgan ab.....ich denke da kannst du dann sehen wie ich denke ......



[mm] y=\bruch{cos(x)\*2cos(x)-2\*(-sin(x))\*sin(x)}{2\*2\*cos^{2}(x)} [/mm]

[mm] y=\bruch{2\*cos^{2}(x)+2\*sin^{2}(x)}{2\*2\*cos^{2}(x)} [/mm]

[mm] Y=\bruch{2\*(cos^{2}(x)+sin^{2}(x)}{4\*cos^{2}(x)} [/mm]

[mm] y=\bruch{1}{2\*cos^{2}(x)} [/mm]


wieder weit von der "1" entfernt!  

bitte um einen weiteren denkanstoß


danke und gruß
stephan


Bezug
                                        
Bezug
Ableitung: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:34 Do 08.02.2007
Autor: Herby

Hi,

und das verstehe ich nun nicht, deine 1 steht doch im Zähler, ist noch etwas verkehrt [kopfkratz3]



lg
Herby

Bezug
                                                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:40 Do 08.02.2007
Autor: fidelio

hallo herbi,

ist mir nun alles klar, aber mein sohn hat mir die falsche lösung gesagt oder ichhabe das falsch verstanden.  meine rechnung stimmt und das ergebnis ist auch richtig mit " 1" im zähler


also danke für deine hilfe und gruß
stephan

Bezug
                                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Do 08.02.2007
Autor: Herby

Hallo,

> hallo herby,
>  
> da bin ich wieder......ich habe ein brett vor dem kopf -
> ich sehs einfach nicht...... ich schreibe jetzt meinen
> ganzen rechenvorgan ab.....ich denke da kannst du dann
> sehen wie ich denke ......
>  
>
>
> [mm]y=\bruch{cos(x)\*2cos(x)-2\*(-sin(x))\*sin(x)}{2\*2\*cos^{2}(x)}[/mm]
>  
> [mm]y=\bruch{2\*cos^{2}(x)+2\*sin^{2}(x)}{2\*2\*cos^{2}(x)}[/mm]
>  
> [mm]Y=\bruch{2\*(cos^{2}(x)+sin^{2}(x)}{4\*cos^{2}(x)}[/mm]
>  
> [mm]y=\bruch{1}{2\*cos^{2}(x)}[/mm]

nur zur Beruhigung - dieses Ergebnis stimmt [daumenhoch]


lg
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]