matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Ableitung
Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:09 Mi 06.12.2006
Autor: ragnar79

Aufgabe
[mm] x^-1(x²+1)\wurzel{x} [/mm]

Hiermit habe ich Probleme. Muss ich erst Klammern auflösen?

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 Mi 06.12.2006
Autor: Herby

Hallo ragnar,


> [mm]x^{-1}(x²+1)\wurzel{x}[/mm]
>  Hiermit habe ich Probleme. Muss ich erst Klammern
> auflösen?  

ja, das wäre sinnvoll [ok]



Liebe Grüße
Herby

Bezug
        
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:02 Mi 06.12.2006
Autor: ragnar79

Aufgabe
[mm] x^-1(x²+1)\wurzel{x} [/mm]

daher

[mm] (x+x^-1)*x^1/2 [/mm] ???

Bezug
                
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Mi 06.12.2006
Autor: Herby

Hallo,

> [mm]x^-1(x²+1)\wurzel{x}[/mm]
>  daher
>
> [mm](x+x^-1)*x^1/2[/mm] ???

ja, und nun die MBProduktregel anwenden, wenn dir das wegen der Klammer zu kompliziert aussieht, dann kannst du die auch auseinander ziehen:


[mm] (x+x^{-1})*x^{1/2}=x*x^{1/2}+x^{-1}*x^{1/2} [/mm]


es gibt dann noch folgende Vereinfachung:


[mm] x*x^{1/2}=x^1*x^{1/2}=x^{1+1/2}=x^{3/2} [/mm]

und

[mm] x^{-1}*x^{1/2}=x^{-1+1/2}=x^{-1/2} [/mm]



damit gelangst du zu:


[mm] x^{3/2}+x^{-1/2} [/mm]


und kannst auf beide Summanden die MBKettenregel wirken lassen :-)


Liebe Grüße
Herby

Bezug
                        
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 Mi 06.12.2006
Autor: ragnar79

OK danke Herby, konnte nun alles soweit nachvollziehen. Aber wozu die Kettenregel anwenden? (im letzten Schritt) Es ist doch eher die Summenregel anzuwenden bzw. Potenzregel???

Daher erhalte ich doch dann: [mm] 3/2x^1/2 [/mm] - 1/2x^-3/2  (Genau die Lösung steht auch im Lösungsteil meines Aufgabenbuches)

Bezug
                                
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:59 Mi 06.12.2006
Autor: Herby

Hallo,


> OK danke Herby, konnte nun alles soweit nachvollziehen.
> Aber wozu die Kettenregel anwenden? (im letzten Schritt) Es
> ist doch eher die Summenregel anzuwenden bzw.
> Potenzregel???

ja, natürlich - hatte auch die Potenzregel im Sinn gehabt [bonk]

> Daher erhalte ich doch dann: [mm]3/2x^1/2[/mm] - 1/2x^-3/2  (Genau
> die Lösung steht auch im Lösungsteil meines Aufgabenbuches)

prima


Liebe Grüße
Herby

Bezug
                                        
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 Mi 06.12.2006
Autor: ragnar79

Danke für deine Hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]