matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - Ableitung
Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Mo 31.07.2006
Autor: Bebe

Hallo, wie berechne ich die Ableitung von [mm] 1/(x^x)? [/mm] Danke für eure Antwort.

        
Bezug
Ableitung: zunächst umformen
Status: (Antwort) fertig Status 
Datum: 14:55 Mo 31.07.2006
Autor: Roadrunner

Hallo Bebe!


Wende hier die Eigenschaft der Umkehrfunktion für e-Funktion und Logarithmus sowie MBPotenzgesetze an, um zunächst umzuformen:

$f(x) \ = \ [mm] \bruch{1}{x^x} [/mm] \ = \ [mm] \left( \ x^x \ \right)^{-1} [/mm] \ = \ [mm] x^{x*(-1)} [/mm] \ = \ [mm] \blue{x}^{-x} [/mm] \ = \ [mm] \left[ \ \blue{e^{\ln(x)}} \ \right]^{-x} [/mm] \ = \ [mm] e^{\ln(x)*(-x)} [/mm] \ = \ [mm] e^{-x*\ln(x)}$ [/mm]


Nun kannst Du mit der Regel [mm] $\left( \ e^z \ \right)' [/mm] \ = \ [mm] e^z$ [/mm] sowie MBKettenregel (mit MBProduktregel für die innere Ableitung) vorgehen ...


Gruß vom
Roadrunner


Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:13 Mo 31.07.2006
Autor: Barncle

hmmm.... kann ich das nicht auch ganz gewönlich ableiten?
also einfach:

[mm] (x^{-x})' [/mm] = -x [mm] x^{-x-1} [/mm] (-1)

oder? hab auch keine ahnung was rauskommt, wenn mans auf deine art abkeitet.. :)


Bezug
                        
Bezug
Ableitung: nur für konstante Exponenten!
Status: (Antwort) fertig Status 
Datum: 16:18 Mo 31.07.2006
Autor: Roadrunner

Hallo Barncle!


Die MBPotenzregel beim Ableiten [mm] $\left( \ x^n \ \right)' [/mm] \ = \ [mm] n*x^{n-1}$ [/mm] gilt lediglich für konstante Exponenten, was hier eindeutig nicht erfüllt ist.


Gemäß MBKettenregel gilt hier:   $f'(x) \ = \ [mm] e^{-x*\ln(x)} [/mm] * [mm] \left[ \ -x*\ln(x) \ \right]'$ [/mm]

Die Ableitung der eckigen Klammer (= innere Ableitung) ist nun mit der MBProduktregel zu bestimmen.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]