matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Ableitung
Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:53 Sa 04.02.2006
Autor: Stiephie

Hi, heute bräuchte ich mal Hilfe bei einer Ableitung:

[mm] y=ln(1/(x+\wurzel{x^2-1})) [/mm]

Meine erste Idee war, dass ich die Wurzel umschreibe und über den Bruch hole damit ich die innere Ableitung machen kann:

[mm] y=ln((x+(x^2-1)^{1/2})^{-1}) [/mm]

aber dadurch wird es irgendwie auch nicht leichter.
Bis hier hin ist es noch klar:
[mm] y'=(1/(1/(x^2-1))) [/mm]

Schonmal danke für die Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung: Logarithmusgesetz
Status: (Antwort) fertig Status 
Datum: 00:19 So 05.02.2006
Autor: Loddar

Hallo Stiephie,

[willkommenmr] !!


> Meine erste Idee war, dass ich die Wurzel umschreibe und
> über den Bruch hole damit ich die innere Ableitung machen
> kann:
>  
> [mm]y=ln((x+(x^2-1)^{1/2})^{-1})[/mm]

So schlecht ist die Idee gar nicht. Wende nun (vor dem Ableiten) ein MBLogarithmusgesetz an: [mm] $\log_b\left(a^m\right) [/mm] \ = \ [mm] m*\log_b(a)$ [/mm]


$y \ = \ [mm] (-1)*\ln\left[x+\left(x^2-1\right)^{\bruch{1}{2}}\right]$ [/mm]


Kommst Du nun etwas weiter?


Gruß
Loddar


Bezug
                
Bezug
Ableitung: Produktregel
Status: (Frage) beantwortet Status 
Datum: 00:53 So 05.02.2006
Autor: Stiephie

Also mit der Produktregel folgt ja dann folgendes:

[mm] y'=\bruch{-1}{(x+ \wurzel{x^2-1})} [/mm] + [mm] 0\*... [/mm] mal innere Ableitung, welche so aussehen müsste:

[mm] \bruch{x}{\wurzel{x^2-1}}+1 \*2x [/mm]


Bezug
                        
Bezug
Ableitung: Korrektur
Status: (Antwort) fertig Status 
Datum: 10:06 So 05.02.2006
Autor: Loddar

Hallo Stiephie!


> Also mit der Produktregel folgt ja dann folgendes:

Die MBProduktregel ist hier überflüssig (weil unnötiger Aufwand), aber man kommt damit auch zum Ziel ...


> [mm]y'=\bruch{-1}{(x+ \wurzel{x^2-1})}[/mm] + [mm]0\*...[/mm] mal innere Ableitung,

[daumenhoch]


> welche so aussehen müsste: [mm]\bruch{x}{\wurzel{x^2-1}}+1 \*2x[/mm]

Wenn Du hinten den Faktor [mm] $\*2x$ [/mm] wegnimmst, stimmt es.

Nun beide Terme noch zusammensetzen ...


Gruß
Loddar


Bezug
                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:42 So 05.02.2006
Autor: Stiephie

Erst mal vielen Dank!
Muss jedoch nochmal nachfragen wieso ich nicht noch [mm] \*2x [/mm] rechnen muss?
Mein Gedanke war, dass ich von der Wurzel auch nochmal die innere Ableitung machen muss.

Sorry, aber ich steh wohl im Moment voll aufm Schlauch!

Danke schonmal!

Gruß Stiephie

Bezug
                                        
Bezug
Ableitung: Erklärung
Status: (Antwort) fertig Status 
Datum: 21:26 So 05.02.2006
Autor: Loddar

Hallo Stiephie!


Das hast Du doch bereits berücksichtigt mit dem $x_$ im Zähler des Bruches:

[mm] $\left( \ \wurzel{x^2+1} \ \right)' [/mm] \ = \ [mm] \bruch{1}{2*\wurzel{x^2+1}}*2x [/mm] \ = \ [mm] \bruch{x}{\wurzel{x^2+1}}$ [/mm]


Gruß
Loddar


Bezug
                                                
Bezug
Ableitung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:40 So 05.02.2006
Autor: Stiephie

Nochmals vielen Dank! Hab mir die Aufgabe vorhin nochmal angeschaut und weiß auch nicht mehr, was ich mir gestern dabei gedacht habe.
;-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]