matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationAbleiten von Integralen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Ableiten von Integralen
Ableiten von Integralen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten von Integralen: Leibniz-Regel????
Status: (Frage) beantwortet Status 
Datum: 10:51 Sa 20.11.2004
Autor: Michael1974

Hallo!

Ich kann die folgende Aufgabe nicht allein lösen:

[mm] \bruch{d}{dp} \integral_{py}^{b} [/mm] gh(g) dg

Meine Vermutung ist, dass man dazu die Leibniz-Regel verwenden muss, darin bin ich aber absoluter Anfänger.

Dennoch hier mein Versuch:

1. Da das obere Integral (b) nach p abgeleitet 0 ergibt, fällt dieser Term nach Anwendung der Leibniz-Regel weg.

2. Weil die Ableitung von gh(g) nach p ebenfalls 0 ergibt, fällt der Integral-Term nach Anwendung der Leibniz-Regel auch weg.

3. Übrig bleibt also nur noch der Term -h(p)*y

4. Da das g im Integral ein Faktor war, muss er in der Lösung auch enthalten sein, somit ergibt sich: -gh(p)*y

Das kann aber nicht stimmen, weil ich die Lösung des Gesamtproblems schon habe. Was mache ich falsch?

Was die Leibniz-Regel betrifft, darin bin ich Anfänger.

Die Lösung ist jedenfalls: [mm] -py*\bruch{dH(py)}{dp} [/mm]

Wer kann mir helfen?

Vielen Dank!

Michael

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableiten von Integralen: Hinweis
Status: (Antwort) fertig Status 
Datum: 18:22 Sa 20.11.2004
Autor: Peter_Pein

Hallo Michael,

wenn ich die Leibniz-Regel richtig verstanden habe, hast Du mit den Punkten 1 und 2 Recht. Es bleibt aber [mm]-y*p*h(y*p)*\bruch{d (y*p)}{dp}[/mm] übrig.

Der Rest sollte Folklore sein...

Gruß,
Peter

Bezug
                
Bezug
Ableiten von Integralen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:42 Sa 20.11.2004
Autor: Michael1974

Hallo Peter,

vielen vielen Dank für Deine Antwort!

Die Leibniz-Regel lautet nach meinen Informationen folgendermaßen:

[mm] \bruch{d}{dx}\integral_{u(x)}{v(x)}{f(x,t) dt} [/mm] = f(x,v(x)) v'(x) - f(x,u(x)) u'(x) + [mm] \integral_{u(x)}{v(x)}{f'x(x,t) dt} [/mm] Das x im letzten Term soll tiefgestellt sein, das habe ich so nicht hinbekommen.

Also:

v' = 0 (=> Erster Term fällt weg)
f'x(x,t) = [mm] \bruch{d}{dp} [/mm] gh(g) = 0, weil p in gh(g) gar nicht enthalten ist.
=> dritter Term = 0

Bleibt noch der zweite (mittlere) Term:

Das Minus ergibt sich aus der Formel,
f(x,u(x)) entspricht hier: py h(py), stimmt das?
u'(x) entspricht hier: d py / dp = y, auch richtig?

Insgesamt ergibt sich ja (wenn das alles richtig ist):

-py h(py) y

Wie kommt man nun von dem h(py) y auf [mm] \bruch{dH(py)}{dp}? [/mm]

Ist der Weg von [mm] \bruch{dH(py)}{dp} [/mm] zurück zu h(py) y durch den Weg "Äußere Ableitung mal innere Ableitung (nach p) durchzuführen?

Bitte nochmal um einen kurzen Denkanstoß, dann hab ich bestimmt den "Aha-Effekt"!

Danke!



Bezug
                        
Bezug
Ableiten von Integralen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:52 Mo 22.11.2004
Autor: Julius

Hallo Christian!

> [mm]\bruch{d}{dx}\integral_{u(x)}{v(x)}{f(x,t) dt}[/mm] = f(x,v(x))
> v'(x) - f(x,u(x)) u'(x) + [mm]\integral_{u(x)}{v(x)}{f'x(x,t) dt}[/mm]

[ok]

> v' = 0 (=> Erster Term fällt weg)
>  f'x(x,t) = [mm]\bruch{d}{dp}[/mm] gh(g) = 0, weil p in gh(g) gar
> nicht enthalten ist.
>  => dritter Term = 0

[ok]
  

> Bleibt noch der zweite (mittlere) Term:
>  
> Das Minus ergibt sich aus der Formel,
>  f(x,u(x)) entspricht hier: py h(py), stimmt das?

[ok]

>  u'(x) entspricht hier: d py / dp = y, auch richtig?

[ok]
  

> Insgesamt ergibt sich ja (wenn das alles richtig ist):
>  
> -py h(py) y

[ok]
  

> Wie kommt man nun von dem h(py) y auf [mm]\bruch{dH(py)}{dp}? [/mm]
>  
> Ist der Weg von [mm]\bruch{dH(py)}{dp}[/mm] zurück zu h(py) y durch
> den Weg "Äußere Ableitung mal innere Ableitung (nach p)
> durchzuführen?

Genau. Es gilt doch, wenn $H$ die Stammfunktion von $h$ ist, nach der Kettenregel:

[mm] $\frac{dH(py)}{dp} [/mm] =h(py) [mm] \cdot [/mm] y$.

Liebe Grüße
Julius
  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]