matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleiten von Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Ableiten von Funktionen
Ableiten von Funktionen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten von Funktionen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:53 Sa 25.10.2008
Autor: Tim221287

Aufgabe
1.1 a)  [mm] 3x^8+7x^2-3 [/mm]

      b) [mm] \bruch{1}{x+x^2^} [/mm]

      c) [mm] x^3\wurzel{1+x}+x+1 [/mm]

      d) [mm] \bruch{x}{\wurzel{1+x}} [/mm]

Bracuhe für die 4 Teilaufgaben jeweils die erste und zweite Ableitung.
a) hab ich noch hinbekommen mit

f´(x) [mm] 24x^7+14x [/mm]

f´´(x) [mm] 168x^6+14 [/mm]

bei b) hab ich

f´(x)  [mm] \bruch{-1+2x}{2x^2^} [/mm]

f´´(x) [mm] \bruch{12x+1}{2x^2^} [/mm]

und bei c und d hänge ich leider Komplett da meine Mathekenntnisse nach einem guten dreiviertel jahr doch dezent eingerostet sind. Fänds super nett wenn immer einer die Ergebnisse von a und b mit Lösungsweg korrigieren könnte und mir vielleicht nen denkanstoß für c und d geben könnte

        
Bezug
Ableiten von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 Sa 25.10.2008
Autor: Adamantin


> 1.1 a)  [mm]3x^8+7x^2-3[/mm]
>  
> b) [mm]\bruch{1}{x+x^2^}[/mm]
>  
> c) [mm]x^3\wurzel{1+x}+x+1[/mm]
>  
> d) [mm]\bruch{x}{\wurzel{1+x}}[/mm]
>  Bracuhe für die 4 Teilaufgaben jeweils die erste und
> zweite Ableitung.
> a) hab ich noch hinbekommen mit
>
> f´(x) [mm]24x^7+14x[/mm]
>  
> f´´(x) [mm]168x^6+14[/mm]

[ok]

>  
> bei b) hab ich
>
> f´(x)  [mm]\bruch{-1+2x}{2x^2^}[/mm]

[notok]

Das kann leider nicht sein, du musst hier entweder die Quotientenregel anwenden oder du nimmst den Ausdruck als hoch -1 und nutzt Kettenregel:

$ [mm] f(x)=(x+x^2)^{-1} [/mm] $
$ [mm] f'(x)=-1*(x+x^2)^{-2}*(1+2x)=\bruch{-1-2x}{(x+x^2)^2} [/mm] $ Kettenregel
oder
$ [mm] f'(x)=\bruch{0*(x+x^2)-1*(1+2x)}{(x+x^2)^2} [/mm] $ Quotientenregel

>  
> f´´(x) [mm]\bruch{12x+1}{2x^2^}[/mm]

[notok] Dementsprechend dann auch mit Quotientenregel die zweite Ableitung bilden.

>  
> und bei c und d hänge ich leider Komplett da meine
> Mathekenntnisse nach einem guten dreiviertel jahr doch
> dezent eingerostet sind. Fänds super nett wenn immer einer
> die Ergebnisse von a und b mit Lösungsweg korrigieren
> könnte und mir vielleicht nen denkanstoß für c und d geben
> könnte

Bei der c) hast du zwei Möglichkeiten. Die erste, elegantere, ist die Zusammenfassung von [mm] x^3 [/mm] und der Wurzel:
$ [mm] x^3\wurzel{1+x}=\wurzel{x^6+x^7} [/mm] $

Dann kannst du mit der Kettenregel folgendermaßen arbeiten:
$ [mm] (\wurzel{x^6+x^7})'=((x^6+x^7)^{\bruch{1}{2}})'=\bruch{1}{2}*(x^6+x^7)^{-\bruch{1}{2}}*(6x^5+7x^6) [/mm] $

Jetzt kannst du danach noch die anderen Teile von f(x) einzeln ableiten.

Zweite Möglichkeit ist die Produktregel, also:

$ [mm] (x^3\wurzel{1+x})'=3x^2*\wurzel{1+x}+x^3*\bruch{1}{2}*(1+x)^{-\bruch{1}{2}} [/mm] $

Für die d) wendest du ebenfalls die Quotientenregel an und leitest die Wurzel wie gesagt einfach nach dem Schema Grad -1 ab, wobei du an die Kettenregel und ergo an die innere Ableitung denken musst:

$ [mm] f'(x)=\bruch{1*\wurzel{1+x}-x*(\wurzel{1+x})'}{(\wurzel{1+x})^2} [/mm] $ Jetzt allgemein geschrieben, ne? Also schau mal, wie du damit weiterkommst

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]