matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleiten und Extremwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Ableiten und Extremwert
Ableiten und Extremwert < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten und Extremwert: Kurvendiskussion
Status: (Frage) beantwortet Status 
Datum: 23:05 Sa 15.04.2006
Autor: binoy83

Aufgabe
[mm] \bruch{2y^2}{\wurzel {y^2-9}} [/mm] =

Hallo,
leider komme ich nicht auf die Ableitung die erste und dann auch natürlich die Zweite. Ich weiß auch nicht wie ich dann nach null auflöse die erste Ableitung, damit ich die Extremwerte raus bekomme. Beides ist leider sehr schwer und ich mühe mich schon die ganze Zeit ab. ;)
Leider habe ich das mit der Wurzel in der Aufgabenstellung nicht hinbekommen. Natürlich steht alles unter dem Bruch also [mm] y^2-9 [/mm] unter der Wurzel.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableiten und Extremwert: Quotientenregel
Status: (Antwort) fertig Status 
Datum: 23:42 Sa 15.04.2006
Autor: Loddar

Hallo binoy!


Hier ist die MBQuotientenregel erforderlich:

$f'(y) \ = \ [mm] \bruch{4y*\wurzel{y^2-9}-2y^2*\bruch{2y}{2*\wurzel{y^2-9}}}{y^2-9}$ [/mm]

Nun  musst Du hier noch etwas zusammenfassen und alles auf einen Bruchstrich schreiben ...


Gruß
Loddar


Bezug
                
Bezug
Ableiten und Extremwert: Nach Y auflösen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:10 So 16.04.2006
Autor: binoy83

Aufgabe
-

Hi,
danke!!! Den Rechenweg kann ich bis dahin auch verstehen. Nur komme ich trotz vereinfachung und etc. nicht auf die Lösung y= -2*wurzel3 bzw. -2 wurzel-3 und y= 1.
Ich schaffe es einfach nicht durch auflösung nach y von der ersten ableitung auf das ergebnis zu kommen.

Bezug
                        
Bezug
Ableiten und Extremwert: Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 So 16.04.2006
Autor: Disap


>  Hi,
>  danke!!! Den Rechenweg kann ich bis dahin auch verstehen.
> Nur komme ich trotz vereinfachung und etc. nicht auf die
> Lösung y= -2*wurzel3 bzw. -2 wurzel-3 und y= 1.
>  Ich schaffe es einfach nicht durch auflösung nach y von
> der ersten ableitung auf das ergebnis zu kommen.  

Hallo, wie wärs denn, wenn du dir die Mühe gemacht hättest, deinen Rechenweg einmal zu zeigen?
Und was sind das da überhaupt für Lösungen? Ich bekomme
[mm] y_{1,2}=-3\wurzel{2} [/mm] heraus und [mm] y_3=0 [/mm]

$ f'(y) \ = \ [mm] \bruch{4y\cdot{}\wurzel{y^2-9}-2y^2\cdot{}\bruch{2y}{2\cdot{}\wurzel{y^2-9}}}{y^2-9} [/mm] $

Als Vereinfachung bekomme ich

[mm] \br{\br{4*y^3 - 72*y}{2*\wurzel{y^2 - 9}}}{y^2 - 9} [/mm]

Wodurch man nur noch

[mm] 4*y^3 [/mm] - 72*y = 0 untersuchen muss

und da erhalte ich die obengenannten Lösungen. Da du deinen Rechenweg nicht gepostet hast, kann ich dir nun leider nicht sagen, ob du dich verrechnet hast oder ich mich, was ich leider nicht ausschließen kann.

Viele Grüße
Disap



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]