matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenAbleiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Ganzrationale Funktionen" - Ableiten
Ableiten < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Sa 08.09.2007
Autor: moody

Aufgabe
f(x) = (2x+1)²

Leite einmal mit der Kettenregel und einmal durch Termumformungen ab. Vergleiche deine Ergebnisse.

Termumformungen:

4x² + 4x + 1

ableiten:

8x + 4

Kettenregel:

u(x) = x²
u'(x) = 2x

v(x) = 2x+1
v'(x) = 2

f'(x) = 8x + 4


_______________


Meine Frage: Was soll mir beim vergleichen auffallen?

        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Sa 08.09.2007
Autor: Analytiker

Hi moody,

> Meine Frage: Was soll mir beim vergleichen auffallen?

Ich würde sagen, das dir auffalen könnte, das schon bei einer Zweierpotenz (Exponent ist ja hier 2) das Umformen schon aufwändiger ist als die Kettenregel, wo du stumpf die Werte in die Formel einsetzt. Und jetzt stell dir mal vor, du hast keine so schöne Aufgabe wie hier, wo man mal fix die binomischen Formeln anwenden kann (Potenzen höheren Grades), da wird der Weg über die Termumformung aber sehr steinig und fehleranfällig, oder was meinst du? ;-)

Liebe Grüße
Analytiker
[lehrer]

Bezug
                
Bezug
Ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 Sa 08.09.2007
Autor: moody

das schon bei einer Zweierpotenz (Exponent ist ja hier 2) das Umformen schon aufwändiger ist


Danke der bin. Formel war es aber einfacher. Also hätte man doch wenn man mir das zeigen wollte eher eine komplexere Aufgaben wählen sollen oder?

Bezug
                        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Sa 08.09.2007
Autor: M.Rex

Hallo.

> das schon bei einer Zweierpotenz (Exponent ist ja hier 2)
> das Umformen schon aufwändiger ist

Ich weiss nicht, kommt drauf an. Schliesslich kannst du ja mit dem Pascalschen Dreieck fast alle Potenzen darstellen. Ich finde, dass dieser Weg weniger Fehleranfällig ist, als die Kettenregel.

>  
>
> Danke der bin. Formel war es aber einfacher. Also hätte man
> doch wenn man mir das zeigen wollte eher eine komplexere
> Aufgaben wählen sollen oder?

Vielleicht wäre es Sinnvoller, eine de Form [mm] (x+a)^{4} [/mm] oder sogar ^{5} zu nehmen, da hast du wohl recht.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]