matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleiten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Ableiten
Ableiten < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:14 Mi 14.02.2007
Autor: Mark007

1) Hi, wollte meine Aufgaben gerne kontrollieren lassen und einige Fragen stellen:
Leite ab:
f(x)= ln(x)        [mm] g(x)=4*3^x [/mm]
und f+g; f*g ; f:g; f°(verkettet)g ; [mm] g^{-1} [/mm] also die Umkehrfunktion von g(x) ableiten

Meine Lösungen:
f '(x)= 1/x
g [mm] '(x)=4*ln(3)*3^x [/mm] = [mm] 4,3944*3^x [/mm]

(f+g) '(x)= [mm] 1/x+4,3944*3^x [/mm]

(f/g) `(x)= [mm] \bruch{ 4*3^x *1/x - 4,3955ln(x)*3^x}{36*3^x} [/mm]

(f°g) '(x)= [mm] \bruch{4,3944*3^x}{4*3^x}= [/mm] 1,0986

[mm] (g^{-1}) [/mm] '(x)= als erstes nur die Umkehrfunktion: [mm] 4*3^x=y [/mm]
[mm] 3^x= [/mm] y/4
x=log3(y/4)   Die 3 bedeutet zur Basis 3!
y= [mm] log3(\bruch{1}{4}x) [/mm] = ln(0,333333)/ln(3)+ln(x)/ln(3)= [mm] -1+\bruch{ln(x)}{ln(3)} [/mm]

[mm] (g^{-1}) [/mm] '(x)= [mm] \bruch{ln(3)*1/x-ln(x)}{(ln(3))^2} [/mm]

Aber was ist die Ableitung von ln(3)?

h(x)= [mm] \wurzel{x^2+1} [/mm]
h '(x)= [mm] \bruch{x}{\wurzel{x^2+1}} [/mm]

Stimmt das?

k(x)= log5(x)  Wieder zur Basis 5
= [mm] \bruch{ln(5)}{ln(x)} [/mm]
k '(x)= {ln(x)* Ableitung von [mm] ln(5)-1/x*ln(5)}{(ln(x))^2} [/mm]

Und stimmt das?

Danke

        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Mi 14.02.2007
Autor: leduart

Hallo Mark
> 1) Hi, wollte meine Aufgaben gerne kontrollieren lassen und
> einige Fragen stellen:
>  Leite ab:
>  f(x)= ln(x)        [mm]g(x)=4*3^x[/mm]
>  und f+g; f*g ; f:g; f°(verkettet)g ; [mm]g^{-1}[/mm] also die
> Umkehrfunktion von g(x) ableiten
>  
> Meine Lösungen:
>  f '(x)= 1/x
>  g [mm]'(x)=4*ln(3)*3^x[/mm] = [mm]4,3944*3^x[/mm]

richtig  

> (f+g) '(x)= [mm]1/x+4,3944*3^x[/mm]

richtig
f*g fehlt  

> (f/g) '(x)= [mm]\bruch{ 4*3^x *1/x - 4,3955ln(x)*3^x}{36*3^x}[/mm]

Der Nenner ist [mm] falsch!(4*3^x)^2=16*3^{2x} [/mm] oder [mm] 16*9^x [/mm]  
Du solltest vielleicht auch noch durch [mm] 3^x [/mm] kuerzen!

> (f°g) '(x)= [mm]\bruch{4,3944*3^x}{4*3^x}=[/mm] 1,0986

richtig
  

> [mm](g^{-1})[/mm] '(x)= als erstes nur die Umkehrfunktion: [mm]4*3^x=y[/mm]
>  [mm]3^x=[/mm] y/4
>  x=log3(y/4)   Die 3 bedeutet zur Basis 3!
>  y= [mm]log3(\bruch{1}{4}x)[/mm] = ln(0,333333)/ln(3)+ln(x)/ln(3)=

hier hast du nen Fehler log1/4 ist log0,25 nicht log0,333..
es ist auch einfacher:

[mm] 4*3^y=x [/mm]
[mm] ln(4*3^y)=lnx [/mm]
ln4+y*ln3=lnx  y=(lnx-ln4)/ln3

> [mm]-1+\bruch{ln(x)}{ln(3)}[/mm]
>  
> [mm](g^{-1})[/mm] '(x)= [mm]\bruch{ln(3)*1/x-ln(x)}{(ln(3))^2}[/mm]

so noch falsch, [mm] g^{-1}=a+b*lnx [/mm]

[mm](g^{-1})[/mm] '(x)=b/x

> Aber was ist die Ableitung von ln(3)?

ln3 ist ne Zahl! wie 3 oder [mm] \wurzel{3} [/mm]

> h(x)= [mm]\wurzel{x^2+1}[/mm]
>  h '(x)= [mm]\bruch{x}{\wurzel{x^2+1}}[/mm]
>  

Richtig

> k(x)= log5(x)  Wieder zur Basis 5
>  = [mm]\bruch{ln(5)}{ln(x)}[/mm]

hier ist dein erster wirklicher Fehler bei log3 hast dus noch richtig gemacht! müde?
log_5x= [mm]\bruch{ln(x)}{ln(5)}[/mm]
denk dran, die "art" der fkt bleibt erhalten, alle log fkt sehen gleich aus, nur mit ner Zahl vergroessert oder verkleinert! deshalb wird auch die steigung nur mit der Zahl vergroessert.

>  k '(x)= ln(x)* Ableitung von [mm]ln(5)-1/x*ln(5)}{(ln(x))^2}[/mm]
>  
> Und stimmt das?

Wegen Fehler oben nein, aber jetzt kannst dus ja.

Gruss leduart

Bezug
                
Bezug
Ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 Do 15.02.2007
Autor: Mark007

Hi, danke für die Verbesserung!
Ich habe hier jetzt noch einige Fehler versucht zu berichtigen ist die Rechnung so richtig?
f*g= [mm] ln(x)*4*3^x [/mm]
(f*g) '(x)= [mm] ln(x)*4,39*3^x+ 4*3^x*1/x= 4,3944ln(x)*3^x+ \bruch{4}{x}*3^x [/mm]


Okay, die Umkehrfunktion von g(x)= [mm] 4*3^x [/mm] ist [mm] g^{-1}(x)= \bruch{ln(x/4)}{ln(3)} [/mm]
[mm] g^{-1} [/mm] '(x)= [mm] \bruch{1/x}{1,0986123} [/mm]    Auf den Nenner komme ich, da ln(3) ^2 durch das ln(3) im Zähler gekürzt wurde!

Und dann noch die ableitung von k(x)= [mm] \bruch{ln(x)}{ln(3)} [/mm]
k '(x)= [mm] \bruch{1/x}{ln(3)} [/mm]
Ist das jetzt richtig?
Danke

Bezug
                        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Do 15.02.2007
Autor: leduart

Hallo
ALLES RICHTIG
(-:
GRUSS leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]