matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikAbkühlrate berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "HochschulPhysik" - Abkühlrate berechnen
Abkühlrate berechnen < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abkühlrate berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:05 Di 30.06.2015
Autor: jim-bob

Aufgabe
Berechnen sie die Abkühlgeschwindigkeit einer Nickel-Legierung in Form einer Kugel.

Schmelztemp. 1603,16K, Abkühlung auf 298,16K
c=-444J/(kg*K) (Wikipedia)
k wurde berechnet mit [mm] 1,78474-10^-7W/(m^2*k) [/mm]

Hallo zusammen,

ich soll die Abkühlgeschwindigkeit einer Nickellegierung berechnen.

Verwendet habe ich hierzu das Newtonische Abkühlgesetz.

T(t)=Tu-c*exp (-kt)

umgestellt nach t

ln ((T(t)-Tu)/(-c*-k))
und bekomme einen Wert von 7,216652503. Nun tue ich mich noch etwas schwer mit der Einheit. müsste es nicht theoretisch sec, min, h sein? und nicht eine Geschwindigkeit in z.B. [mm] m/s^2? [/mm]

Benutze ich die Falsche Formel?

        
Bezug
Abkühlrate berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Di 30.06.2015
Autor: Event_Horizon

Hallo!

> Berechnen sie die Abkühlgeschwindigkeit einer
> Nickel-Legierung in Form einer Kugel.
>  
> Schmelztemp. 1603,16K, Abkühlung auf 298,16K
>  c=-444J/(kg*K) (Wikipedia)
>   k wurde berechnet mit [mm]1,78474-10^-7W/(m^2*k)[/mm]
>  Hallo zusammen,
>  
> ich soll die Abkühlgeschwindigkeit einer Nickellegierung
> berechnen.
>  
> Verwendet habe ich hierzu das Newtonische Abkühlgesetz.
>  

> T(t)=Tu-c*exp (-kt)

Nunja, hier gibt es schon ein Problem. Das c ist nach deiner Angabe keine Temperatur, und die e-Funktion hat keine Einheit. Du subtrahierst also unterschiedliche Größen, das kann nicht funktionieren.

Und kt müßte ebenfalls Einheitenlos sein, ist es aber mit deinem k nicht.

>  
> umgestellt nach t
>  
> ln ((T(t)-Tu)/(-c*-k))

Diese Umformung würde ich auch gerne mal sehen...

> Benutze ich die Falsche Formel?

Ich glaube, du gehst das ganze zu einfach an. Die Newtonsche Formel für einen Körper mit gegebener Anfangstemperatur [mm] T_A [/mm] und Umgebungstemperatur [mm] T_U [/mm] lautet:

[mm] T(t)=T_U+(T_A-T_U)*\exp(-\kappa [/mm] t)

Das [mm] \kappa [/mm] ist eine Größe mit Einheit 1/s und ist ein Maß für die Abkühlgeschwindigkeit. Diese ist abhängig von Geometrie, Größe, Wärmekapazität  und anderen Eigenschaften. Dafür gibts aber keine vorgefertigte Formel.

Dein k ist ein Wärmeübergangskoeffizient, also der Wärmestrom [mm] \dot{Q} [/mm] pro Fläche und pro Kelvin Tempperaturdifferenz Körper <-> Umgebung

Da der extrem klein ist, gehe ich davon aus, daß du die Temperaturverteilung innerhalb der Kugel als homogen annehmen kannst. Du hast also

* Eine Kugel mit unbekanntem Radius, Volumen und Masse, damit auch Wärmemenge bei aktueller Temperatur.
* Die Kugel hat ne Oberfläche, zusammen mit der aktuellen Temperatur und Außentemperatur gibt dir das den Wärmestrom, der aus der Kugel heraus führt.

Die Formel dazu sieht so aus:

[mm] Q(t)=Q_0-\dot{Q}(t) [/mm]

Setze  nun alles ein, z.B. [mm] Q_0=c*m_\text{Kugel}*T_A [/mm]

Das führt dich zu einer Differenzialgleichung in t, die Lösung ist eine Exponentialfunktion ähnlich der, die du benutzt hast.

Übrigens, die Größe der Kugel wird drin bleiben. Eine große Kugel hat im Verhältnis zu ihrer Oberfläche ein großes Volumen, und wird langsamer abkühlen. Sprich, irgendwie fehlen dir noch weitere Werte.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]