matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbiturvorbereitungAbivorbereitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Abiturvorbereitung" - Abivorbereitung
Abivorbereitung < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abivorbereitung: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:21 Mo 09.02.2009
Autor: Jule_

Hallo, bin gerade dabei einige Aufgaben für den Pflichtteil zu rechnen. Die Aufgaben habe ich im Internet gefunden, aber leider ohne Lösung. Dabei brauche ich nun eure Hilfe.

1) ableiten
[mm] f(x)=x*sin(\bruch{1}{2}x^2+2) [/mm]

meine Lösung:

[mm] f'(x)=sin(\bruch{1}{2}x^2+2)+x^2*cos(\bruch{1}{2}x^2+2) [/mm]

ist das richtig? Kann ich das noch vereinfachen?

2)Gleichung lösen:

[mm] e^x+e^{\bruch{1}{2}x}-2=0 [/mm]

Substitution [mm] e^{\bruch{1}{2}x}=z [/mm]

2z+z-2=0

[mm] z=\bruch{2}{3} [/mm]

x=-0,81  oder [mm] 2*ln(\bruch{2}{3}) [/mm] kann das sein?

        
Bezug
Abivorbereitung: Zur 2. Gleichung
Status: (Antwort) fertig Status 
Datum: 17:46 Mo 09.02.2009
Autor: ChopSuey

Hallo Jule!


> 2)Gleichung lösen:
>  
> [mm]e^x+e^{\bruch{1}{2}x}-2=0[/mm]
>  
> Substitution [mm]e^{\bruch{1}{2}x}=z[/mm]
>  
> 2z+z-2=0

Wodurch entsteht $\ 2z $ ?

Ich dachte an folgendes:

[mm]e^x+e^{\bruch{1}{2}x}-2=0[/mm]

Substitution: z = [mm] e^{\bruch{1}{2}x} [/mm]

Potenzgesetze: $\ [mm] e^{\bruch{1}{2}x} \gdw (e^x)^\bruch{1}{2} [/mm] $

Dann ist $\ [mm] e^x [/mm] = [mm] z^2 [/mm] $

Also:

$\ [mm] z^2 [/mm] + z -2 = 0 $


Sollte so, denke ich, stimmen. Und der Rest ist für dich sicher ein Kinderspiel :-)

>  
> [mm]z=\bruch{2}{3}[/mm]
>  
> x=-0,81  oder [mm]2*ln(\bruch{2}{3})[/mm] kann das sein?

Gruß
ChopSuey

Bezug
                
Bezug
Abivorbereitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:56 Mo 09.02.2009
Autor: Jule_


> Hallo Jule!
>  
>
> > 2)Gleichung lösen:
>  >  
> > [mm]e^x+e^{\bruch{1}{2}x}-2=0[/mm]
>  >  
> > Substitution [mm]e^{\bruch{1}{2}x}=z[/mm]
>  >  
> > 2z+z-2=0
>  
> Wodurch entsteht [mm]\ 2z[/mm] ?
>  
> Ich dachte an folgendes:
>  
> [mm]e^x+e^{\bruch{1}{2}x}-2=0[/mm]
>  
> Substitution: z = [mm]e^{\bruch{1}{2}x}[/mm]
>  
> Potenzgesetze: [mm]\ e^{\bruch{1}{2}x} \gdw (e^x)^\bruch{1}{2}[/mm]
>  
> Dann ist [mm]\ e^x = z^2[/mm]
>  
> Also:
>  
> [mm]\ z^2 + z -2 = 0[/mm]
>
>
> Sollte so, denke ich, stimmen. Und der Rest ist für dich
> sicher ein Kinderspiel :-)
>  
> >  

> > [mm]z=\bruch{2}{3}[/mm]
>  >  
> > x=-0,81  oder [mm]2*ln(\bruch{2}{3})[/mm] kann das sein?
>
> Gruß
>  ChopSuey


ja, danke!! Das mit dem 2z war ein blöder Fehler!!

Bezug
        
Bezug
Abivorbereitung: zur Ableitung
Status: (Antwort) fertig Status 
Datum: 17:47 Mo 09.02.2009
Autor: Loddar

Hallo Jule!


Deine Ableitung ist richtig (und lässt sich nicht weiter vereinfachen).


Gruß
Loddar


Bezug
                
Bezug
Abivorbereitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:58 Mo 09.02.2009
Autor: Jule_


> Hallo Jule!
>  
>
> Deine Ableitung ist richtig (und lässt sich nicht weiter
> vereinfachen).
>  
>
> Gruß
>  Loddar
>  


Danke. Das freut mich :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]