matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisAbiaufgabe: Geradenbestimmung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Abiaufgabe: Geradenbestimmung
Abiaufgabe: Geradenbestimmung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abiaufgabe: Geradenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Mi 25.05.2005
Autor: Figurenzauberer

Gegeben ist die Funktion f; [mm] f(x)=\bruch{1}{8}x(x-6)² [/mm] ihr Schaubild sei K

d) Die Gerade mit der Steigung m durch den Kurvenpunkt T (6/0) sei gm.
Bestimmen Sie diejenigen Werte von m für die gm mit K drei Punkte gemeinsam hat.
Für welches m kleiner 0 ist einer der drei gemeinsamen Punkte von den beiden anderen gleich weit entfernt?
(als Hilfsmittel Taschenrechner erlaubt)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Abiaufgabe: Geradenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Mi 25.05.2005
Autor: Max

Hallo Sascha,

irgendwie vermisse ich deine eigenen Lösungsansätze. Nun ja, trotzdem schon mal einige Gedanken zur Aufgabe.

Du kannst ja [mm] $g_m$ [/mm] schon einmal aufstellen mit der Punktsteigungsform. Damit erhälst du:

[mm] $g_m(x)=m\cdot [/mm] (x-6)$

Jetzt musst du ja nur noch die Gleichung [mm] $g_m(x)=f(x)$ [/mm] lösen und entscheiden, wie sich $m$ auf die Anzahl der Lösungen auswirkt.

Gruß Max

Bezug
                
Bezug
Abiaufgabe: Geradenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:39 Do 26.05.2005
Autor: Figurenzauberer

Vielen Dank Max- ich bin einfach nicht darauf gekommen das ich hier die Punkt-Steigungs-Form benutzen kann.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]