matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenAbhängigkeit von Vektoren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Vektoren" - Abhängigkeit von Vektoren
Abhängigkeit von Vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abhängigkeit von Vektoren: Bestimmung reeller Zahl
Status: (Frage) beantwortet Status 
Datum: 21:43 Mi 21.10.2015
Autor: neevel

Aufgabe
Wie muss die reelle zahl a gewählt werden, damit die Vektoren linear abhängig sind?
(1)      (2)   (1)
(a)      (8)   (1)
[mm] (a^2) [/mm]       (18)  (1)

Hi leute ich komme bei dieser Aufgabe einfach verflucht nicht weiter seit 2stunden
schafft es einer irgendwie heraus zu bekommen ? als lösung soll a=1 oder a=5/3 raus kommen nur komme ich nie auf diese lösung
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abhängigkeit von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Mi 21.10.2015
Autor: Chris84


> Wie muss die reelle zahl a gewählt werden, damit die
> Vektoren linear abhängig sind?
> (1)      (2)   (1)
>  (a)      (8)   (1)
>  [mm](a^2)[/mm]       (18)  (1)
>  Hi leute ich komme bei dieser Aufgabe einfach verflucht
> nicht weiter seit 2stunden
> schafft es einer irgendwie heraus zu bekommen ? als lösung
> soll a=1 oder a=5/3 raus kommen nur komme ich nie auf diese
> lösung
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Huhu,
das sieht wahrscheinlich schwieriger aus, als es ist ^^
Drei Vektoren [mm] $\vec{u},\vec{v}$ [/mm] und [mm] $\vec{w}$ [/mm] sind doch dann linear abhaendgig, wenn z.B.

[mm] $\vec{u}=\lambda\vec{v}+\kappa\vec{w}, \lambda,\kappa\in\IR$ [/mm]

gilt.
Schreib das doch mal fuer deine Vektoren aus ( Vektoren kann man uebrigens so schreiben [mm] $\vektor{1 \\ 1 \\ 1}$ [/mm] ).
Dann bekommst du ein (nichtlineares) Gleichhungssystem mit 3 Gleichungen und 3 Unbekannten! Kannst du das loesen? (Wenn nicht, wo happert's?)

Ist das klar soweit?

Gruss,
Chris

Bezug
        
Bezug
Abhängigkeit von Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Mi 21.10.2015
Autor: neevel

ich habe es genau so gemacht wie zu einem post hier von Gonozal_IX zu einer ähnlichen aufgabe die ich auch nach 10 min begriffen habe aber bei der jetzigen aufgabe wo ich dann das ergebnis von s in die dritte gleichung einsetze klappt es nicht : https://matheraum.de/forum/Bestimmung_reeller_Zahl/t182122

Hm ok, rechnen wir es mal durch:

3r + 1s + at = 0
1r + 0s + 4t = 0
ar + 4s + 1t = 0

Ok, gehen wir mal nach dem o.g. Prinzip vor.

Alle Gleichungen haben eine Variable direkt dastehen. Davon ist die 2. diejenige mit weniger Variablen, also nehmen wir erstmal die und formen die um.

r = -4t

Nun haben wir noch eine Gleichung, wo eine Variable direkt drinsteht, die 1. also setzen wir da ein: (man könnte natürlich auch in die 3. Einsetzen und dann nach t Umformen ;-) )

3(-4t) + 1s + at = 0

Umformen:

s = (12 - a)t


Und in die Dritte einsetzen:

a(-4t) + 4(12-a)t + 1t = 0

Umformen:

-4at + 48t - 4at + t = 0

(49 - 8a)t = 0


Soooooooooo, die Vektoren sollen nun linear abhängig sein, d.h. es muss mindestens noch eine Lösung des Gleichungssystem geben, die verschieden der trivialen Lösung r=s=t=0 ist, also soll $ [mm] t\not=0 [/mm] $ gelten.
Also muss gelten, damit die Gleichung erfüllt ist:

(49-8a) = 0

$ a = [mm] \bruch [/mm] {49}{8} $

Fertig :-)

Bezug
                
Bezug
Abhängigkeit von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Mi 21.10.2015
Autor: Chris84


> ich habe es genau so gemacht wie zu einem post hier von
> Gonozal_IX zu einer ähnlichen aufgabe die ich auch nach 10
> min begriffen habe aber bei der jetzigen aufgabe wo ich
> dann das ergebnis von s in die dritte gleichung einsetze
> klappt es nicht :
> https://matheraum.de/forum/Bestimmung_reeller_Zahl/t182122
>  
> Hm ok, rechnen wir es mal durch:
>
> 3r + 1s + at = 0
> 1r + 0s + 4t = 0
> ar + 4s + 1t = 0
>
> Ok, gehen wir mal nach dem o.g. Prinzip vor.
>
> Alle Gleichungen haben eine Variable direkt dastehen. Davon
> ist die 2. diejenige mit weniger Variablen, also nehmen wir
> erstmal die und formen die um.
>
> r = -4t
>
> Nun haben wir noch eine Gleichung, wo eine Variable direkt
> drinsteht, die 1. also setzen wir da ein: (man könnte
> natürlich auch in die 3. Einsetzen und dann nach t
> Umformen ;-) )
>
> 3(-4t) + 1s + at = 0
>
> Umformen:
>
> s = (12 - a)t
>
>
> Und in die Dritte einsetzen:
>
> a(-4t) + 4(12-a)t + 1t = 0
>
> Umformen:
>
> -4at + 48t - 4at + t = 0
>
> (49 - 8a)t = 0
>
>
> Soooooooooo, die Vektoren sollen nun linear abhängig sein,
> d.h. es muss mindestens noch eine Lösung des
> Gleichungssystem geben, die verschieden der trivialen
> Lösung r=s=t=0 ist, also soll [mm]t\not=0[/mm] gelten.
> Also muss gelten, damit die Gleichung erfüllt ist:
>
> (49-8a) = 0
>
> [mm]a = \bruch {49}{8}[/mm]
>
> Fertig :-)  

Du hast nun den anderen Beitrag hierher kopiert? Was bringt dir das????

Schreib doch bitte DEINE Rechnungen hier rein. (Habe dir ja auch schon 'nen Ansatz gegeben!)

Bedenke auch, dass bei dir ein [mm] $a^2$ [/mm] auftaucht. Das heisst, ab irgendeiner Stelle wird es wohl auf die pq Formel hinauslaufen....


Bezug
                        
Bezug
Abhängigkeit von Vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:46 Mi 21.10.2015
Autor: abakus


> Bedenke auch, dass bei dir ein [mm]a^2[/mm] auftaucht. Das heisst,
> ab irgendeiner Stelle wird es wohl auf die pq Formel
> hinauslaufen....

>
Hier geht es ohne pq-Formel.
Der erste Vektor als Linearkombination der anderen beiden liefert folgendes Gleichungssystem:
(1) 1=2r+s
(2) a=8r+s
(3) a²=18r+s
Differenzbildung liefert:
(2)-(1): a-1=6r
(3)-(2): a²-a=10r
Man beachte, dass a²-a=a(a-1) ist.
Für a=1 muss r=0 gelten.
Für alle anderen a kann man den Quotienten der beiden Differenzen bilden.
Gruß Abakus

Bezug
                                
Bezug
Abhängigkeit von Vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:07 Mi 21.10.2015
Autor: Chris84


>
> > Bedenke auch, dass bei dir ein [mm]a^2[/mm] auftaucht. Das heisst,
>  > ab irgendeiner Stelle wird es wohl auf die pq Formel

>  > hinauslaufen....

>  >
>  Hier geht es ohne pq-Formel.
>  Der erste Vektor als Linearkombination der anderen beiden
> liefert folgendes Gleichungssystem:
>  (1) 1=2r+s
>  (2) a=8r+s
>  (3) a²=18r+s
>  Differenzbildung liefert:
>  (2)-(1): a-1=6r
>  (3)-(2): a²-a=10r
>  Man beachte, dass a²-a=a(a-1) ist.
>  Für a=1 muss r=0 gelten.
>  Für alle anderen a kann man den Quotienten der beiden
> Differenzen bilden.
>  Gruß Abakus

Na guuuuuuuuut,
ueberredet ^^

Ich selbst hatte es nicht nachgerechnet und pq geht immer ;)

Gruss,
Chris

Bezug
        
Bezug
Abhängigkeit von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 05:09 Do 22.10.2015
Autor: fred97

Schreibe die 3 Vektoren als Spalten einer 3x3 - Matrix [mm] A_a. [/mm]

Bestimme nun a so, dass [mm] det(A_a)=0 [/mm] ist.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]