matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesAbgeschlossenheit von Z(G)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Abgeschlossenheit von Z(G)
Abgeschlossenheit von Z(G) < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abgeschlossenheit von Z(G): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:07 Mo 08.11.2010
Autor: FrageAcc

Aufgabe
Es sei G mit [mm] \circ [/mm] eine Gruppe. Das sogenannte Zentrum der Gruppe G ist wie folgt definiert:

Z(G):={a [mm] \in [/mm] G: a\ circ b = b [mm] \circ [/mm] a für alle b [mm] \in [/mm] G}.

Zeige, dass Z(g) mit der Verknüpfung [mm] \circ [/mm] eine abelsche Gruppe bildet.

Wir haben den Beweis in einer Übungsstunde gemacht und ich habe ihn auch soweit verstanden, bis auf die Abgeschlossenheit! Die Übungsleiterin hat folgendes geschrieben:

Es seien a,c [mm] \in [/mm] Z(G), b beliebig aber fest.

z.z.: (a [mm] \circ [/mm] c) [mm] \circ [/mm] b = b [mm] \circ [/mm] (a [mm] \circ [/mm] c)

Da fängt es schon an! Warum ist die Gruppe abgeschlossen, wenn wir das zeigen? Ich komme auch nicht ganz mit der Formulierung "beliebig aber fest" klar...Ich schreibe trotzdem noch den Beweis hierein (aber darum geht es mir nicht!):

(a [mm] \circ [/mm] c) [mm] \circ [/mm] b = a [mm] \circ [/mm] (c [mm] \circ [/mm] b) = a [mm] \circ [/mm] (b [mm] \circ [/mm] c) = (a [mm] \circ [/mm] b) [mm] \circ [/mm] c = (b [mm] \circ [/mm] a) [mm] \circ [/mm] c = b [mm] \circ [/mm] (a [mm] \circ [/mm] c)

=> [mm] "\circ" [/mm] ist innere Verknüpfung

        
Bezug
Abgeschlossenheit von Z(G): Antwort
Status: (Antwort) fertig Status 
Datum: 01:43 Di 09.11.2010
Autor: Sax

Hi,

> z.z.: (a $ [mm] \circ [/mm] $ c) $ [mm] \circ [/mm] $ b = b $ [mm] \circ [/mm] $ (a $ [mm] \circ [/mm] $ c)

> Da fängt es schon an! Warum ist die Gruppe abgeschlossen, wenn wir das
> zeigen?

Du meinst : "Warum ist Z(G) abgeschlossen"
Nun, Z(G) ist genau dann abgeschlossen, wenn für zwei beliebige Elemente a und c aus Z(G) auch deren Produkt a [mm] \circ [/mm] c in Z(G) liegt.
Ausführlicher geschrieben hätte der Beweis also so anfangen können :
" Seien a [mm] \in [/mm] Z(G)  und c [mm] \in [/mm] Z(G)  beliebig.
  Zu zeigen : a [mm] \circ [/mm] c [mm] \in [/mm] Z(G)  "

Nun ist aber das Kriterium dafür, dass ein Element von G (z.B. a [mm] \circ [/mm] c) in Z(G) liegt gerade, dass dieses Element mit allen Elementen der Gruppe kommutiert. Wenn G sehr umfangreich ist, wird man vielleicht im Leben nicht fertig, diese Kommutativität für alle Gruppenelemente einzeln nachzuweisen.
Deshalb nimmt man sich stellvertretend ein beliebiges Gruppenelement (dafür wird hier der Buchstabe b verwendet) her und zeigt die Kommutativität mit diesem. "Fest" bedeutet, dass dieses b im Folgenden dann immer für dasselbe Gruppenelement steht und nicht mehr verändert wird.

So kommt die z.z.-Zeile im Beweis zustande.

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]